INTERNATIONAL Society of Posture & Gait Research

ispgr

June 30 to July 4 Edinburgh Edinburgh International Conference Centre

> @ISPGR #ISPGR2019 ispgr.org

Program 2019 ISPGR WORLD KONGRESS

NICON LIFE SCIENCES

CLINICALLY VALIDATED MOTION CAPTURE

Precisely designed for life sciences at every level

Visit us at Booth **2**

LEARN MORE

TABLE OF CONTENTS

Program at a gland Welcome letter Leadership . . . Membership... About ISPGR. . . Congress general i ISPGR half day tou **Pre-congress work** Sunday, 30 Jun **Detailed** program **Pre-congress work** Awards **Keynote speakers** Symposia abstracts Authors and prese Poster session info Poster session 1 Poster session 2 **Poster session 3 Exhibitor profiles** Meeting floor plan **Poster & exhibitor** Thank you to our s

ce	•	•	•	•	•	•	•	•	•	•	•	•	•	<mark>.</mark> 2
•	•	•	•	•	•	•	•	•	•	•	•	•	•	<mark>.</mark> 3
•	•	•	•	•	•	•	•	•	•	•	•	•	•	<mark>.</mark> 4
•	•	•	•	•	•	•	•	•	•	•	•	•	•	<mark>.</mark> 5
•	•	•	•	•	•	•	•	•	•	•	•	•	•	<mark>.</mark> 6
n	for	m	at	io	n	•	•	•	•	•	•	•	•	<mark>.</mark> 6
ır	S.	•	•	•	•	•	•	•	•	•	•	•	•	. 8
sł	loi	ps												
e	20	19)	•	•	•	•	•	•	•	•	•	•	. 9
•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
sł	lol	ps	•	•	•	•	•	•	•	•	•	•	•	12
•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
S	•	•	•	•	•	•	•	•	•	•	•	•	•	34
n	ter	's i	in	de	x	•	•	•	•	•	•	•	•	71
D	•	•	•	•	•	•	•	•	•	•	•	•	•	81
1:	M	on	da	ıy	1:	st	Ju	ıly	•	•	•	•	•	81
2:	Tu	les	da	ay	2	n	ł J	lul	ly	•	•	•	•	98
3:	Th	u	rso	la	y	4t	h	Ju	ıly	•	•	•	.1	16
•	•	•	•	•	•	•	•	•	•	•	•	•	.1	.34
lS	•	•	•	•	•	•	•	•	•	•	•	•	<mark>.</mark> 1	.38
f	loo	or :	pla	an	L.	•	•	•	•	•	•	•	.1	.39
su	pp	001	te	ers	; <mark>.</mark>	•	•	•	•	•	•	•	.1	.40

PROGRAM AT A GLANCE

Jul-04	Keynote Lecture 5 Trevor Drew (08:30 - 09:30)	AGM (9:30 - 10:00)		Posters Session 3 & Exhibitors (10:30 - 12:30) Refreshments provided 10:00 - 10:30		Lunch & Exhibits (12:30-13:30)	Symposium 10 Symposium 11 Symposium 12 (13:30 - 15:15) (13:30 - 15:15)	Refreshment Break (15:15 - 15:45)		Symposium 13 Symposium 14 Symposium 15 (15:45 - 17:30) (15:45 - 17:30) (15:45 - 17:30)	Closing Ceremony	(17:30 - 18:00)	Freetime	Gala Dinner (19:00 - 00:00)		
	×		- 10:30)	a lea O	(10:30 - 12:30)											
Jul-03	Keynote Lecture 4 Adolfo Bronstein (08:30 - 09:30)	Emerging Scientist Talk (09:30 - 10:00)	ė		(10:30 - 12:30)		Tours/Free Time									
	Y E		Refreshm		(10:30 - 12:30)											
	Keynote Lecture 3 Lynn Rochester (08:30 - 09:30)			10:00 - 12:30) 30 - 10:30			Symposium 9 (13:30 - 15:15)	- 3:45)		Oral 3 (15:45 - 17:45)						
Jul-02		(08:30 - 09:30) PSA Talk (09:30 - 10:00)		Posters Session 2 & Exhibitors (10:00 - 12:30) Refreshments provided 10:00 - 10:30	ents provided 10	Lunch & Exhibits (12:30 - 13:30)		Refreshment Break (3:15 - 3:45)		Oral 2 (15:45 - 17:45)			Free time			
	× -		Posters Sessio Refreshme		Posters Sess Refreshin		Symposium 7 (13:30 - 15:15)	Refresh		Oral 1 (15:45 - 17:45)						
	<u>6</u>			-10:30) - 10:30			Symposium 3 (13:30 - 15:15)	3:45)		Symposium 6 (15:45 - 17:30)						
Jul-01	Keynote Lecture 2 Herman van der Kooij (08:30 - 09:30)	Honorary Member Presentation (09:30 - 10:00)		Posters Session 1 & Exhibitors (10:00 - 12:30) Refreshments provided 10:00 - 10:30		Lunch & Exhibits (12:30 - 13:30)	Symposium 2 (13:30 - 15:15)	Refreshment Break (15:15 - 3:45)		Symposium 5 (15:45 - 17:30)		Committees Meeting (17:45 - 18:15)		Free time		
	Her	Honorary	Honorary (Posters Session Refreshmer			Symposium 1 (13:30 - 15:15)	Refreshm		Symposium 4 (15:45 - 17:30)		ů		
June-30	Pre-congress Workshops (08:30 - 11:30) Free Time			Pre-congress Workshops (12:30 - 15:30)		Free Time	Opening Ceremony (16:30 - 17:00)	Keynote Lecture 1 Janice Eng	(17:00 - 18:00)	Opening Reception (18:00 - 19:30)	Free Time					

WELCOME LETTER

We are honoured and excited to serve as co-chairs for the 2019 World Congress of the International Society of Posture and Gait Research. We are pleased to welcome you to the historic city of Edinburgh, the capital city of Scotland. This year marks the 50th anniversary of the marriage between basic and clinical researchers discussing and exchanging scientific knowledge surrounding postural control and gait. ISPGR has grown significantly from the first meeting in 1969. It all began as a relatively small discussion about posturography among researchers, mostly from Japan and Europe, and grew steadily to the current meeting of close to 700 delegates from around the world, discussing and sharing basic and clinical aspects of gait, posture, and balance control across the lifespan. We are extremely thrilled about the growth and success of this year's meeting, we received a record number of abstract submissions. We are sure that the success of this meeting had nothing to do with us, but rather with the fact that Edinburgh is the second most popular tourist destination in the UK. Aside from its popularity, Edinburgh has long been a centre of education, particularly in the fields of medicine, the sciences, and engineering and so it is the perfect location to be celebrating our Society's Golden anniversary. Neither of us are from this area, but as you know, the conference venues are chosen independent of the co-chairs' affiliations in order to offer its members value for money, accessibility, great conference facilities, and tourist attractions. Our management company has worked hard to ensure excellent meeting, dining, and tourist experiences. In planning this meeting, we have built on the success of previous meetings and responded to member feedback by providing more of what you valued most. Accordingly, we have selected pre-conference workshops that reflect the needs of the members, brought in five excellent world-class keynote speakers to cover all the major areas of our society, and increased the number of member-led symposia sessions. As in previous years, we have allocated significant time and attention to poster presentations and scheduled them in such a way as to encourage attendance. We have also continued the Society's tradition of focusing on young researchers and student members by awarding student oral, poster and travel awards, as well as recognizing excellent early-career researchers through the Emerging and Promising Scientist Awards. The impact of the Society's dedication to student participation is highlighted by the fact that over 40% of our meeting attendance is made up of student members this year! We want to extend sincere thanks to all individuals who have dedicated their time to help organize this meeting. We extend special thanks to the members of the Scientific Content Committee, and particularly its Chair and ISPGR Vice-President, Dr. Vivian Weerdesteyn, who has worked hard to help us objectively select this year's symposia, oral and poster presentations. We are also especially grateful to the members of the Awards Committee that have the challenging task of choosing winners for the awards. We also would like to thank the ISPGR board members for their continued support, and our Conference Organizers at Podium Conferences, who have been an essential partner to the Society. Finally, we thank you, in advance, for your individual contributions and efforts to help make this a memorable and successful meeting for all.

We encourage you to take advantage of the opportunity to share and discuss your work, but also to develop new networks of friends and colleagues, plan future collaborations, and create and exchange new ideas and perspectives.

Friends, colleagues, "Fàilte gu Dùn Èideann" and the 2019 World Congress of the ISPGR!

Kristen Hollands & Michael Cinelli Congress Chairs

┥ ToC

2

LEADERSHIP

MEMBERSHIP

PRESIDENT

Mark Hollands (Europe) Liverpool John Moores University, GBR

VICE PRESIDENT

Vivian Weerdesteyn (Europe) Radboud University Medical Centre, NLD

SECRETARY

Kim Delbaere (Asia-Pacific) Neuroscience Research Australia, UNSW, AUS

TREASURER

Nicoleta Bugnariu (Americas) University of North Texas Health Science Center, USA

ELECTED REPRESENTATIVES: 2016 – 2020

Anouk Lamontagne (Americas) McGill University, CAN **Mirjam Pijnappels** (Europe) MOVE Research Institute, NLD **Shinya Masahiro** (Asia-Pacific) Hiroshima University, JPN William Geoffrey Wright (Americas) Temple University, USA

ELECTED REPRESENTATIVES: 2018 – 2022

Sjoerd Bruijn (Europe) VU Amsterdam, NLD **Sue Lord** (Asia-Pacific) Auckland University of Technology, NZL **Anat Mirelman** (Asia-Pacific) Tel Aviv University, ISR **Patrick Sparto** (Americas) University of Pittsburgh, USA

SCIENTIFIC CONTENT COMMITTEE

Committee co-chairs:

Vivian Weerdesteyn Radboud University, NLD (ISPGR Vice-President)

Kristen Hollands University of Salford, GBR (2019 World Congress co-chair)

Michael Cinelli Wilfrid Laurier University, CAN (2019 World Congress co-chair)

Committee representatives:

Lisa Alcock Newcastle University, GBR Fabio Augusto Barbieri Univ. Estadual Paulista, BRA Tanvi Bhatt University of Illinois, USA Michael Cinelli Wilfrid Laurier University, CAN Mihalis Doumas Queen's University Belfast, GBR Brett Fling Colorado State University, USA **Richard Foster** Research Institute for Sport and Exercise Sciences, GBR Brook Galna Newcastle University, GBR Kristen Hollands University of Salford, GBR Mark Hollands Liverpool John Moores University, GBR Klaus Jahn University of Munich, DEU Claudine Lamoth University of Groningen, NLD Avril Mansfield University of Toronto, CAN Jasmine Menant Neuroscience Research Australia, AUS Manuel Montero Odasso Western University, CAN Martijn Müller University of Michigan, USA Toshihisa Murofushi Teikyo University, JPN Melvyn Roerdink Vrije Universiteit Amsterdam, NLD Kathryn Sibley University of Manitoba, CAN **Patrick Sparto** University of Pittsburgh, USA John Stins Research Institute MOVE, NLD Herman van der Koiij Delft University, NLD Will Young Brunel University, GBR

Membership in ISPGR is open to scientists, researchers, clinicians and students from around the world involved in the many research and practical aspects of gait and posture. Membership dues support the ISPGR's mission of creating a community of multidisciplinary posture and gait researchers and students.

MEMBER BENEFITS

- Exclusive opportunity to submit abstracts for review and consideration for presentation at Society meetings
- Opportunity to register for Society meetings at reduced registration rates
- Professional development and networking
- Access to online resources and conference proceedings
- Opportunity to submit applications for student scholarships and awards
- 20% discount on a subscription to ISPGR's official publication, Posture & Gait, published by Elsevier 8 times per year
- Ability to post and review job and grant opportunities
- Opportunity to post news and information on related events opportunity to vote in elections for the Board of Directors
- Opportunity to stand for election to the Board of Directors
- Opportunity to serve as an officer of the Board of Directors
- Opportunity to serve on Society committees

Brisbane Convention & Exhibition Centre

June 27 – July 1, 2021

October 1, 2020

ToC

MEMBER CATEGORIES

Regular members

Any person who is engaged in research or clinical practice related to posture and gait is eligible to be a regular member.

Students & Post Docs

Students enrolled in degree granting programs at institutions of higher learning and post doctoral fellows are eligible to be student members.

Member dues

ISPGR membership dues are good for a two-year period beginning on October 1 and expiring September 30 of the second year. Current membership dues are:

Regular member \$150USD Student/Post-Doc member \$75USD

JOIN A COMMITTEE

All current ISPGR members are encouraged to serve on a Society committee and actively engage in the future planning of the Society and World Congress. Committees include:

- Scientific content committee
- Awards committee
- External relations committee
- Communications committee

If you would like to learn more about committees or the Society, please join us on Monday July 1 at 17:45 at the Committees information meetings in the Sidlaw suite (level 3).

ABOUT ISPGR

The International Society of Posture and Gait Research (ISPGR), formerly called the International Society of Posturography is a staff-supported, member driven organization with 500+ members located in over 20 countries around the world.

The Society provides a multidisciplinary forum for basic and clinical scientists, provides member benefits and holds regular meetings in order to:

- Present and discuss the latest research and clinical findings relating to the control of posture and gait and related disorders
- Facilitate interaction between members who meet from all corners of the globe
- Promote the broad discipline of posture and gait research

ISPGR HISTORY

The International Society of Posture and Gait Research was formed in 1969 under the name the International Society of Posturography, by a group of basic scientists and clinicians who had similar interests in quantifying postural sway during stance. Most of the Society members in the first years were from Europe and Japan.

The first meetings took place in Madrid (1971), Smolenica (1973), Paris (1975), Sofia (1977), Amsterdam (1979), Kyoto.

(1981) and Houston (1983). At the 1983 meeting in Houston the founders realized that interest in posturography had expanded to include the entire area of balance and gait control and at the annual meeting in 1986, the Society was renamed The International Society for Postural and Gait Research but was more familiarly known as the International Society for Posture and Gait Research. By the 1992 meeting in Portland, Oregon, the Society had grown to over 300 members worldwide and member interests expanded to include sensory and motor control neurophysiology, biomechanics, movement disorders, neural circuitry, vestibular function, neurological disorders, effects of development and aging, rehabilitation, robotics, modeling, neural compensation, and motor learning as related to control of balance and gait. A minor change to the Society name, plus revisions to the bylaws occurred in 2014 and the Society is now known as the International Society of Posture and Gait Research.

CONGRESS GENERAL INFORMATION

MEETING VENUE

Edinburgh International Conference Centre (EICC)

The Exchange, 150 Morrison St, Edinburgh EH3 8EE (please review the floor plan on page 138 program for

further details)

WORLD CONGRESS REGISTRATION

Registration for the Congress includes admission to all sessions, access to all coffee breaks and lunches daily. In addition, registration includes the welcome reception, plus the opportunity to purchase discounted tickets to the whisky tasting and gala dinner. All tickets can be purchased from the registration desk.

NAME BADGES

Your name badge is your admission ticket to the conference sessions, coffee breaks, meals, and reception. Please wear it at all times. At the end of the conference we ask that you return your badge to the registration desk, or at one of the badge recycling stations.

ISPGR Board members, exhibitors and staff will be identified by appropriate ribbons.

DRESS CODE

Dress is casual for all ISPGR meetings and social events.

REGISTRATION AND INFORMATION DESK HOURS

The registration and information desk, located in Strathblane Hall, will be open during the following dates and times:

Sunday, June 30	07:30 – 19:30
Monday, July 1	07:30 – 17:30
Tuesday, July 2	07:30 – 17:30
Wednesday, July 3	07:30 – 13:00
Thursday, July 4	07:30 – 17:30

SOCIAL MEDIA POLICY

The use of social media onsite at conferences is on the Set-up and removal rise. This may create some opportunities but may also be There are three poster sessions during the congress. Poster considered by some as a threat. We propose to emphasize presenters must set-up and remove their posters during the opportunities; increased exposure, openness, and the following times: inclusiveness, while also providing the opportunity to help Poster session 1 support those who wish to prevent unwanted exposure.

ISPGR encourages communication between members and the use of social media. Please note the following quidelines:

- ISPGR provides icons and stickers for permission and prohibition of photo recording, video recording and sharing on social media. These stickers are available onsite at the registration desk, and online as jpeg icons *ispgr.org/presentation-guidelines* to include with online presentations
- Members are encouraged to explicitly indicate their wishes by using the various stickers and icons available to them
- Please respect a presenters' wishes if they indicate the information presented is not to be captured or shared
- If there's no explicit indication of intent, assume that any media capturing of the presentation is prohibited and ask presenter their wishes. Always take into consideration the possibility that presenters do not want their presentation to be recorded or shared

SPEAKER INFORMATION

For all oral sessions, each room will be equipped with

- 1 laptop (facilitating both Keynote and PowerPoint)
- 1 LCD projector
- 1 microphone
- 1 laser pointer

All speakers must refer to their specified upload times, sent previously via email and included on the app and website. Please visit the registration desk if you have any questions.

POSTER INFORMATION

Set-up:	Monday, July 1	07:30 – 08:30
Dedicated time:	Monday, July 1	10:30 – 12:30
Remove:	Monday, July 1	by 18:00
Poster session 2		
Set-up:	Tuesday, July 2	07:30 – 08:30
Dedicated time:	Tuesday, July 2	10:30 – 12:30
Remove:	Tuesday, July 2	by 18:00
Poster session 3		
Set-up:	Thursday, July 4	07:30 – 08:30
Dedicated time:	Thursday, July 4	10:30 – 12:30
Remove:	Thursday, July 4	by 15:45

Any posters not removed by the identified time will be held at the registration desk until the end of the congress. Any posters that remain unclaimed by the end of the congress will be disposed of.

Information on poster authors, poster numbers and poster titles begin onpage 71. for a complete copy of all the poster abstracts, please visit *ispgr.org*, where you can download an electronic copy.

Easy reference poster floor plans can be found on page 138.

STAFF

ISPGR staff from Podium Conference Specialists can be identified by the orange ribbons on their name badges. Feel free to ask any one of our staff for assistance.

INTERNET SERVICES

ISPGR attendees have access to complimentary WIFI in the meeting area space area.

WIFI instructions:

Username:	Delegate
Password:	haymarket

ISPGR HALF DAY TOURS

PRE-CONGRESS WORKSHOPS SUNDAY, 30 JUNE 2019

WEDNESDAY, JULY 3

Booking: If you have pre-booked a tour online, you will find a ticket in the back of your badge, indicating which tour you have booked and the departure time.

Please note: due to the popularity pre-booking is required for all tours

Location: All tours will be departing from Mercat Cross, a 15-minute walk from the EICC (see map section of app for directions)

Time: The tours are leaving at various times starting from 14:00. If you have booked a tour, please check your departure time.

TOUR 1: HISTORIC WALKING TOUR INCLUDING ACCESS TO EDINBURGH CASTLE

Skip the long queues for Edinburgh Castle, by joining this popular historic walking tour!

\$45 USD per person (children 5-15 \$30): includes a walking tour with local guide, and front of gueue access with guided tour of Edinburgh Castle

Discover an Edinburgh beyond the reach of tour buses and guidebooks. Your expert guide will take you to the places where history was made – the wynds, closes, courtyards and homes of Edinburgh's Old Town. You'll be hanging on your tour guide's every word, as the true stories of the capital's past unfold.

TOUR 2: GHOSTLY UNDERGROUND WALKING TOUR

\$20USD per person (children 5-15 \$15): includes exclusive access to Edinburgh's rarely seen underground vaults, and a lively walking tour with a local guide

This walking includes exclusive access to some of Edinburgh's 'most haunted' underground vaults. First, you'll follow your cloaked guide through the shadowy closes of Edinburgh's Old Town. These are dark streets untouched by daylight, filled with a strange silence, their damp walls carrying only the faintest echo of the crowds on the high street you've left behind.

With the scene set, you'll descend into the depths of the city – and listen in horror to its dark and sinister side. Torture. Murder. Hangings. From body snatchers to the real-life Jekyll and Hyde, you'll be gripped by the true tales that lie hidden beneath Edinburgh's streets. Please note: this tour may not be suitable for young children.

All pre-congress workshops will take place at the Edinburgh International Conference Centre (EICC) unless otherwise stated

JOURNAL WORKSHOPS

AUTHORS' WORKSHOP:

Authors' rights and responsibilities

Morning session: 08:30 – 10:00 **Location:** Carrick suite (level 1) This workshop will cover ethical issues including plagiarism and will be presented by the Editors and Publisher of Gait and Posture.

REVIEWERS' WORKSHOP:

Identifying limitations in scientific articles

Morning session: 10:15 – 11:45 (lunch on own) **Location:** Carrick suite (level 1) Organisers: Presented by the Editors and Publisher of Gait and Posture

WORKSHOP 1:

Mixed reality for posture and gait research: Principles and applications

Morning session: 08:30 - 11:30 (lunch on own) **Location:** Moorefoot room (level 0)

Organiser: Melvyn Roerdink Vrije Universiteit Amsterdam, NLD Mixed reality, the integration of real and digital worlds, is the rising star in the virtuality continuum. A promising advance in that regard are untethered and transparent headsets equipped with a holographic display unit, through which 3D holograms are not only overlaid but anchored to and interacting with the wearer's environment. This merging of real and digital worlds affords a realistic interaction with digital content during free movements in open environments. The main goal of this mixed-reality workshop is to get attendees familiar with the basic principles of mixed reality and its potential for posture and gait research through lecture-like plenary presentations intermingled with demos. What is mixed reality? How does it relate to virtual reality and augmented reality? How does it merge holographic content with the real world? What can I do with mixed reality? A second goal is to offer attendees hands-on experience with mixed reality in a research context through four different interactive demos: 1) the eyes, the ears and the brains of mixed reality, 2) Holobstacle, a mixed-reality application for studying holographic obstacle avoidance in the lab, 3) MR-Automated Mobility Assessment, a mixed-reality application to guide the wearer to self-initiate and complete clinical mobility assessments and 4) Holocue, a mixed-reality application for on-demand cue activation to reduce freezing of gait in Parkinson's disease patients.

WORKSHOP 2:

Pursuing an industry position after graduate school

Morning session: 08:30 - 11:30 (lunch on own) **Location:** Tinto room (level 0)

(Free to trainees/graduate students and post docs - preregistration required) Organiser: Adam Goodworth University of Hartford, USA Graduates with advanced degrees in human movement disciplines are often interested in non-academic career pathways. However, graduates are typically provided with very little perspective or direction in how to consider a non-academic

ToC

ToC

PRE-CONGRESS WORKSHOPS SUNDAY, 30 JUNE 2019

career. As it turns out, there are a wide variety of non-academic pathways. These include start up companies, clinical facilities, product development, forensic sciences, private research centers, and more. Our workshop will provide 1) an overview of the common non-academic career pathways, 2) presentations from ISPGR members with significant non-academic employment, 3) a question and answer session with the speakers and a panel of approximately five ISPGR industry sponsors, and 4) an open time for relationship building. To focus on a pragmatic goal, presenters and panel members will address three guiding guestions – 1) How is/was research conducted and applied in your non-academic setting, 2) What skills do potential employees need to be successful in your setting, 3) What are practical steps interested researchers and graduate students could take to move toward a career in your setting? The presentation is geared toward graduate students and academic faculty interested in a non-academic career. However, established academic researchers may also find the workshop interesting to help in their mentoring of graduate students in career directions, and to gain knowledge about how research is translated and used in non-academic settings.

Speakers Include:

Lewis Nashner – Experience leading clinical rehab engineering companies James Borrelli – Experience in forensic engineering Tyler Cuddeford – Experience in Nike Sport Research Lab Rebecca Robins - Data science management at DataCamp

WORKSHOP 3:

Assessing real world mobility: Are we ready for the digital revolution?

Afternoon session: 12:30 – 15:30 (lunch on own)

Location: Moorefoot room (level 0)

Organiser: Lynn Rochester Newcastle University, GBR

The goal of the workshop is to provide the audience with a comprehensive overview of the challenges and opportunities of digital technology to assess real world mobility outcomes. Given the ageing population and concomitant increasing chronic burden, we need low-cost, widely-accessible tools to measure, monitor, and predict mobility problems. Mobility assessment in the real world forms the ideal place and digital technology the ideal partner. But are we ready for this? What are the significant challenges associated with this endeavour? This pre-conference workshop will review the state of the art of current mobility assessment tools across a range of different and relevant disease populations to set the scene for where we are now. We will then explore the challenges and opportunities of digital technology to enhance the current status from a range of different perspectives: the technical challenges for accurate measurement; clinical validation; the big-data challenge; the end user of technology; and implementation in practice.

WORKSHOP 4:

Advanced rehabilitation technology to boost your research!

Afternoon session: 12:30 – 15:30 (lunch on own)

Location: Offsite (University of Edinburgh venue)

For a detailed program and directions to the venue, please refer to the 'congress resources' section of the congress app Location link: www.ed.ac.uk/informatics/about/location

Organiser: Frans Steenbrink Motek Medical

In this workshop we will outline the state-of-the-art of currently available rehabilitation technology for gait and balance research. More specifically, we will focus on real-time visual feedback, gait adaptability, and gait perturbations using an instrumented dual-belt treadmill, motion capturing and other technology in combination with an application development framework to create custom research applications. Compared to most other (over-ground) motion labs, the treadmill set-up allows for more functional gait tasks to be evaluate in scientific protocols. Also controlled manipulations,

such as slit-belt walking with deviating speeds for each belt, can be used to study motor-control in both healthy individuals and patient. Cognitive, visual and mechanical perturbations using the walking surface of the treadmill can be used to study pathology-specific responses. By controlling input settings for the perturbations and collecting parameters related to balance and locomotion, input-output responses can be evaluated to better understand the human system. In this workshop we will introduce the different concepts related to advance human movement research. Together, we will think of examples of how new research concepts can be integrated in laboratory setting using different types of technology. Also, we will interactively show and adjust several research applications using motion capture and virtual reality technologies and invite you to engage in our discussion on how we can use technology better understand the health and pathological human balance-and locomotion system.

CONFERENCE MANAGEMENT

From conception to delivery and post conference review, we are here to help you plan, prepare and deliver an outstanding conference.

 (\mathbf{L})

Ē **ASSOCIATION MANAGEMENT** INTEGRATED ONLINE TOOLS **WEB DESIGN & PRINT** Simplify your **membership sign-ups**, As a busy researcher and scientist, Let us help make you look areat you've already got a lot on your plate abstract submissions, conference with a modern, interactive registrations and exhibitor bookings website for your Society or without having to worry about managing your society. Step up and with our payment processing enabled, Conference. integrated set of tools. lead, knowing we can help. Find out how we can help WWW.PODIUMCONFERENCES.COM +1 800.472.764

office@podiumconferences.com

ToC

www.ispgr.org | @ISPGR | JUNE 30 – JULY 4

2019 ISPGR WORLD CONGRESS

ToC

WE SPECIALIZE IN

Scientific, Academic & **Research Societies and** their Conferences

Need help managing your **Conference or Association?**

DETAILED PROGRAM

SUNDAY JUNE 30

All congress sessions will take place at the Edinburgh International Conference Centre (EICC) unless otherwise stated.

PRE-CONGRESS WORKSHOPS

MORNING WORKSHOPS

08:30 - 10:00	Gait & Posture authors' workshop: Authors' rights and responsibilities Location: Carrick (level 1)
08:30 - 11:30	WS.1. Mixed reality for posture and gait research: Principles and applications Location: Moorefoot (level 0)
08:30 - 11:30	WS.2. <i>Pursuing an industry position after graduate school</i> Location: Tinto (level 0)
10:15 - 11:45	Gait & Posture reviewers' workshop: Identifying limitations in scientific articles

Location: Carrick (level 1)

AFTERNOON WORKSHOPS

12:30 - 15:30 WS.3. Assessing real world mobility: Are we ready for the digital revolution? Location: Moorefoot (level 0)

12:30 - 15:30 **WS.4.** Advanced rehabilitation technology to boost your research! Location: Offsite (University of Edinburgh venue)

Please refer to the 'congress resources' section of the app for further details on venue and program. Location info: www.ed.ac.uk/informatics/about/location

OPENING OF WORLD CONGRESS 2019

16:30 – 17:00 **Opening ceremony** Location: Pentland auditorium (level 3)

17:00 – 18:00 Keynote lecture 1

Location: Pentland auditorium (level 3) Janice Eng University of British Columbia, CAN Interventions to improve mobility after stroke: A journey from mechanisms and clinical trials to implementation science

Chair: Michael Cinelli Wilfrid Laurier University, CAN

18:00 – 19:30 **Opening reception** Strathblane Hall (level 0)

MONDAY JULY 1

LECTURES

08:30 - 09:30	Keynote lecture 2
	Location: Pentland auditoriu
	Herman van der Kooij Uni
	Studying human balan applications for weara
	Chair: Vivian Weerdesteyn
09:30 - 10:00	Honorary member pr
	Location: Pentland auditoriu
	2019 Honorary members:
	Anne Shumway-Cook Univ
	Rolf Moe-Nilssen University
10:00 – 12:30	Posters session 1 and
	(Refreshments provided 10:0
	Location: Strathblane & Lom
	Poster listings begin on page

12:30 – 13:30 Lunch and exhibits

Location: Strathblane & Lomond (level 0)

ToC

12

um (level 3) iversity of Twente, NLD

ce control by perturbations: Insights and ble robotics

Radboud University Medical Center, NLD

resentation

im (level 3)

iversity of Washington, USA ty of Bergen, NOR

exhibitors

00 - 10:30ond (level 0) ae 71

13:30 - 15:15 SYMPOSIUM SESSIONS 1 - 3

S.1 Virtual reality in motion: Moving posture and gait research forward with do-it-yourself vs turnkey systems

Location: Pentland suite (level 3) Chair: Anouk Lamontagne McGill University, CAN Moderators: Haylie Miller UNT Health Science Centre, USA Meir Plotnik Sheba Medical Center, ISR Participants: Desiderio Cano Porras Tel Aviv University and Center of Advanced Technologies in Rehabilitation, ISR **Marco Buhler** *McGill University, CAN* Nicoleta Bugnariu University of North Texas Health Science Center at Forth Worth, USA **Anouk Lamontagne** *McGill University, CAN* Meir Plotnik Sheba Medical Center, ISR

S.2 fNIRS data to understand cortical mechanisms underpinning exercise interventions

Location: Fintry suite (level 3) Chair: Jasmine Menant NeuRA, Australia, AUS Participants: Paulo Pelicioni Neuroscience Research Australia, AUS Eling de Bruin ETH Zurich, CHE **Rodrigo Vitorio** Instituto de Biociências, UNESP – Universidade Estadual Paulista, BRA Anat Mirelman Tel-Aviv Sourasky Medical Centre, ISR

S.3 Balance, gait and falls post stroke: Steps towards a better future

Location: Sidlaw suite (level 3) Chairs: Vivian Weerdesteyn Radboud University Medical Center, NLD Itshak Melzer Ben-Gurion University of the Negev, ISR Participants:

Shirley Handelzalts Ben-Gurion University of the Negev, ISR **Tanvi Bhatt** University of Illinois, USA Gelsy Torres-Oviedo University of Pittsburgh, USA Jolanda Roelofs Radboud University Medical Center, NLD Itshak Melzer Ben-Gurion University of the Negev, ISR Vivian Weerdesteyn Radboud University Medical Center, NLD

15:15 – 15:45 Refreshment break

Location: Strathblane & Lomond (level 0)

S.4 Going from here to there and beyond: Fundamental theories and applications from what we have learned about human navigation of cluttered environments

Location: Fintry suite (level 3)

Chair: Anouk Lamontagne McGill University, CAN Participants:

Bradford McFadyen Université Laval, CAN Michael Cinelli Wilfrid Laurier University, CAN Anne-Hélène Olivier Université de Rennes, Inria, FRA Julien Pettré Université de Rennes, Inria, FRA

S.5 Falls prevention should start in middle age - Lessons on prevention from cardiology may advance fall prevention in old age

Location: Sidlaw suite (level 3)

Chair: Stephen Lord Neuroscience Research Australia, AUS Participants:

James Richardson University of Michigan, USA Michele Callisaya University of Tasmania, AUS Mirjam Pijnappels VU Amsterdam, NLD Kim Delbaere Neuroscience Research Australia, UNSW, AUS

S.6 Turning as measure of functional mobility: When biomechanics, neural control, and technology come together

Location: Pentland suite (level 3) Chairs: Martina Mancini Oregon Health & Science University, USA

Fay Horak Oregon Health & Science University, USA Participants:

Marco Schieppati International University of Health, Exercise and Sports, LUX Lorenzo Chiari University of Bologna, ITA Inbal Maidan Tel Aviv Sourasky Medical Center, ISR Martina Mancini Oregon Health & Science University, USA

17:45 – 18:15 Committee interest meeting

Location: Sidlaw suite (level 3)

14

DETAILED PROGRAM

TUESDAY JULY 2

08:30 – 09:30	Keynote lecture 3
	Location: Pentland auditorium (level 3)
	Lynn Rochester University of Newcastle, GBR
	Gait - A step in the right direction?
	Chair: Sue Lord Auckland University of Technology, NZL
09:30 - 10:00	PSA talk
	Location: Pentland auditorium (level 3)
	Jenna Yentes University of Nebraska at Omaha, USA
	Nonlinear analysis: Translating the theoretical into clinical applications
10:00 - 12:30	Posters session 2 and exhibitors
	(Refreshments provided 10:00 – 10:30)
	Location: Strathblane & Lomond (level 0)
	Poster listings begin on page 71
12:30 – 13:30	Lunch and exhibits
	Location: Strathblane & Lomond (level 0)
13.30 - 15.15	SYMPOSIIIM SESSIONS 7 - 9

13:30 - 12:12 21WLO2IOW 2F22ION2 1 - 2

S.7 From basic science to clinical practice: Anxiety, attentional focus and the control of posture and gait

Location: Pentland suite (level 3) Chair: William Young Brunel University London, GBR Participants: **Toby Ellmers** Brunel University, GBR Elmar Kal VU Amsterdam, NLD Martin Zaback VU Amsterdam, NLD Liis Uiga VU Amsterdam, NLD

S.8 Data analytics in the wild: Translating emerging wearable inertial and camera methods to fall prevention intervention strategies

Location: Fintry suite (level 3) Chairs: James Tung University of Waterloo, CAN Alan Godfrey Northumbria University, GBR Participants:

Alan Godfrey Northumbria University, GBR Silvia Del Din Newcastle University, GBR Mina Nouredanesh University of Waterloo, CAN Stephen Robinovitch Simon Fraser University, CAN Kim van Schooten Neuroscience Research Australia (NeuRA), AUS

Parkinson's disease

Location: Sidlaw suite (level 3) Chair: Mandar Jog Western University, CAN Moderator: Olivia Samotus Western University, CAN

Participants:

Olivia Samotus London Health Sciences Centre, GBR Romulo Fuentes Universidad de Chile, CHL Helen Bronte-Stewart Stanford University, USA

15:15 – 15:45 Refreshment break

Location: Strathblane & Lomond (level 0)

15:45 - 17:45 ORAL SESSIONS 1 - 3

0.1 Parkinson's disease

Location: Fintry suite (level 3) Co-Chairs: Martijn Muller University of Michigan, USA Brook Galna University of Newcastle, GBR

0.1.i Episodic motor impairments of falls and freezing of gait differ in regional cerebral central cholinergic system changes in Parkinson's disease

Presenter: Nicolaas Bohnen Muller²

¹University of Michigan & VAMC, ²University of Michigan

0.1.ii Immediate and long-term effects of intensive multimodal balance and gait training on gait and gait variability in Parkinson's disease

Presenter: Linda Rennie Linda Rennie¹, Niklas Löfgren², Erika Franzén² ¹Sunnaas Rehabilitation Hospital, ²Karolinska Institutet

- ToC

16

S.9 Spinal cord stimulation for gait dysfunction and postural instability in

Nicolaas Bohnen¹, Prabesh Kanel², Zhi Zhou², William Dauer², Roger Albin¹, Martijn

0.1.iii Comprehensive measures of balance and gait in GBA mutation carriers and non-carriers in Parkinson's disease

Presenter: **Rosie Morris**

Rosie Morris¹, Douglas Martini¹, Katrijn Smulders², Valerie Kelly³, Amie Hiller¹, Kathy Chung¹, Shu-Ching Hu³, Cyrus Zabetian³, Kathleen Poston⁴, Ignacio Mata³, Karen Edwards⁵, Thomas Montine⁴, Joseph Quinn¹, Fay Horak¹

¹Oregon Health & Science University, ²Sint Maartenskliniek, ³University of Washington, ⁴Stanford School of Medicine, ⁵University of California

0.1.iv Effects of a 6-week cognitively challenging agility exercise program in people with Parkinson's disease

Presenter: Fay Horak

Martina Mancini¹, Fay Horak¹, Naoya Hasegawa¹, Se Hee Jung¹, Vrutangkumar Shah¹, Anjanibhargavi Ragothaman¹, Daniel Peterson², Katrijn Smulders³, Patricia Carlson-Kuhta¹, John Nutt¹, Laurie King¹, Jodi Lapidus¹, Martina Mancini¹

¹Oregon Health & Science University, ²Arizona State University, ³Sint Maartenskliniek

0.1.v Textured insoles improve gait in people with Parkinson's disease who have impaired peripheral sensation

Presenter: Graham Kerr

Graham Kerr¹, Feng Qiu¹, Keith Davids², Ewld Hennig¹, Michael Cole³, Sandy Brauer⁴, Anna Hatton⁴

¹Queensland University of Technology, ²Sheffield Hallam University, ³Australian Catholic University, ⁴University of Queensland

0.1.vi Test-retest reliability and minimal detectable change of the new freezing of gait questionnaire

Presenter: **Pieter Ginis**

Pieter Ginis¹, Carolien Strouwen², Bauke Dijkstra¹, Bastiaan Bloem³, Alice Nieuwboer¹ ¹KU Leuven, ²Hasselt University, ³Radboud University Medical Center

0.1.vii Gait deficits in early stage Parkinson's disease are related to the expression of REM sleep without Atonia

Presenter: Colum MacKinnon

Sommer Amundsen Huffmaster¹, Matthew Petrucci¹, Devin O'Connell¹, Maria Linn-Evans¹, Jae Woo Chung¹, Paul Tuite¹, Colum MacKinnon¹

¹University of Minnesota

0.1.viii Inter-individual balance adaptations in response to perturbation treadmill training in Parkinson's disease

Presenter: Sarah Klamroth

Sarah Klamroth¹, Heiko Gassner¹, Jürgen Winkler¹, Björn Eskofier¹, Jochen Klucken¹, Klaus Pfeifer¹, Simon Steib¹

¹Friedrich-Alexander-University Erlangen-Nürnberg

0.2 Aging and falls

Location: Pentland suite (level 3) Co-chairs: Kathryn Sibley University of Manitoba, CAN Fabio Barbieri São Paulo State University, BRA

behavior

Presenter: Takahiro Higuchi Takahiro Higuchi¹, Risa Okada¹, Ryo Watanabe¹, Takuya Goto¹, Tomoki Hakamata¹, Ryota Hiyoshi¹, Ryuma Yonemoto¹, Akiko Imura¹ ¹Tokyo Metropolitan University

community performance and risk

Presenter: Michele Callisaya Michele Callisaya¹, Joe Verghese² ¹University of Tasmania, ²Albert Einstein College of Medicine

across age groups

Presenter: Maayan Agmon Tamar Shochat¹, Rachel Kizony¹ ¹University of Haifa, ²Hebrew University

based cohort study

Presenter: Harmehr Sekhon Harmehr Sekhon¹, Gilles Allali², Olivier Beauchet¹

Presenter: Yiru Wang Yiru Wang¹, Shuaijie Wang¹, Tanjeev Kaur¹, Tanvi Bhatt¹ ¹University of Illinois at Chicago

Presenter: Erika Pliner ¹University of Pittsburgh, ²Neuroscience Research Australia

18

0.2.i Prevention of cautious strategy in obstacle-avoidance situations in older adults: The effect of spatial constraints on collision-avoidance

0.2.ii The association of clinic-based mobility tasks and measures of

0.2.iii The inter-relationships between glycemic markers and gait patterns

Maayan Agmon¹, Ram Weiss², Hagit Hochner², Iaroslav Youssim², Yechiel Friedlander²,

0.2.iv Motoric cognitive risk syndrome and risk for falls, their recurrence and post-fall fractures: results from a prospective observational population-

¹Jewish General Hospital and Lady Davis Institute for Medical Research, Faculty of Medicine, McGill University, ²Geneva University Hospital and University of Geneva

0.2.v Obstacle-induced trip perturbation training: proactive and reactive adaptation to reduce falls in community-dwelling older adults

0.2.vi Standing steadiness and variability of older adults on a step ladder

Erika Pliner¹, Daina Sturnieks², Kurt Beschorner¹, Mark Redfern¹, Stephen Lord²

0.2.vii The effectiveness of the StandingTall home-based, unsupervised balance exercise program in preventing falls in community-dwelling older people

Presenter: Kim Delbaere

Kim Delbaere¹, Kim van Schooten¹, Stephen Lord¹, Lindy Clemson², GA Rixt Zijlstra³, Jacqueline Close⁴

¹University of New South Wales, ²University of Sydney, ³University of Maastricht, ⁴Prince of Wales Hospital

0.2.viii Walking adaptability for targeted fall-risk assessments

Presenter: Daphne Geerse

Daphne Geerse¹, Melvyn Roerdink¹, Johan Marinus², Jacobus van Hilten² ¹Vrije Universiteit Amsterdam, ²Leiden University Medical Center

0.3 Somatosensory & vestibular function

Location: Sidlaw suite (level 3) Co-chairs: Patrick Sparto University of Pittsburgh, USA Mark Carpenter University of British Columbia, CAN

0.3. Noisy galvanic stimulation and vestibular perception: Otolith versus semicircular canal mediated mechanisms

Presenter: Klaus Jahn Klaus Jahn¹, Aram Keywan², Max Wuehr² ¹Schoen Klinik Bad Aibling and University of Munich, ²University of Munich

0.3.ii Postural regulation strategies in Ehlers-Danlos Syndrome hypermobility type

Presenter: Emma Gabrielle Dupuy Emma Dupuy¹, Leslie Decker¹ ¹UMR-S 1075 COMETE UNICAEN/INSERM

0.3.iii Haptic touch feedback that is sway-referenced and graded can improve center of mass stability in post-concussion syndrome

Presenter: Tyler Cuddeford Andrew Meszaros¹, Alyssa Carey¹, Tyler Cuddeford¹

¹George Fox University

O.3.iv Perception of gait movements using gait-like vibrations in individuals with and without sensorimotor deficits

Presenter: **Tapin Alexandre**

Tapin Alexandre¹

¹Université de Montréal

variable sensory conditions

Presenter: Brian Loyd

pathways during standing

Presenter: Robyn Mildren Robyn Mildren¹, Gregg Eschelmuller¹, Ryan Peters², Jean-Sebastien Blouin¹, Mark Carpenter¹, J. Timothy Inglis¹ ¹University of British Columbia, ²University of Calgary

cutaneous reflexes

Presenter: Tushar Sharma Tushar Sharma¹, Ryan Peters², Leah Bent¹ ¹University of Guelph, ²University of Calgary **0.3.viii** The plantar surface of the foot: The bigger picture

Presenter: Leah Bent Inglis⁴

WEDNESDAY JULY 3

08:30 - 09:30 Keynote lecture 4

Location: Pentland auditorium (level 3) Adolfo Bronstein Imperial College London, GBR Visual control of posture Chair: Mark Hollands John Moores University, GBR 09:30 – 10:00 Emerging Scientist talk **Deborah Jehu** University of British Columbia, CAN Best practices for the assessment and therapeutic intervention of cognition and mobility in aging populations 10:00 – 10:30 Refreshment break Location: Strathblane & Lomond (level 0)

2019 ISPGR WORLD CONGRESS

20

0.3.v 3D head stability of people with vestibular dysfunction during gait in

Brian Loyd¹, Janie Saviers-Steiger¹, Peter Fino¹, Serene Paul², Mark Lester³, Lee Dibble¹ ¹University of Utah, ¹University of Utah, ²University of Sydney, ³Army-Baylor University **0.3.vi** Interaction between lower limb cutaneous and muscle afferent

0.3.vii Subthreshold electrical noise enhances mechanically-evoked

Leah Bent¹, Erika Howe¹, Simone Smith¹, Nicholas Strzalkowski², Ryan Peters³, Timothy

¹University of Guelph, ²Mount Royal University, ³University of Calgary, ⁴University of British Columbia

10:30 – 12:30 ORAL SESSIONS 4 – 6

0.4 Balance control

Location: Fintry suite (level 3)

Co-chairs: Vivian Weerdesteyn Radboud University, NLD Daniel Peterson Arizona State University, USA

0.4.i Effect of external base-of-support perturbation parameters on measures of forward reactive stepping

Presenter: Taylor Winberg

Taylor Winberg¹, Andrew Laing¹ ¹University of Waterloo

0.4.ii Upward perturbation – novel methodology to study stumbling during walking

Presenter: Desiderio Cano Porras & Meir Plotnik Desiderio Cano Porras¹, Jesse Jacobs², Rivka Inzelberg³, Gabriel Zeilig¹, Meir Plotnik¹ ¹Sheba Medical Center, ²University of Vermont, ³Tel Aviv University

0.4.iii A startle response is not evoked during falls following large postural perturbations in young adults

Presenter: Andrew Sawers

Andrew Sawers¹, Stephen Robinovitch¹, Vivian Weerdesteyn²

¹University of Illinois at Chicago, ²Radboud University Medical Center

0.4.iv Cortical midfrontal theta activity scales with acceleration of wholebody mechanical perturbations and reactive stepping behavior

Presenter: Teodoro Solis-Escalante

Teodoro Solis-Escalante¹, Mitchel Stokkermans², Michael Cohen², Vivian Weerdesteyn¹ ¹Radboud University Medical Center, ²Donders Institute for Brain, Cognition, and Behavior

0.4.v Balance perturbation training for rehabilitation of dynamic balance in acquired brain injury victims: An exploratory interventional prospective trial and a neuroimaging investigation

Presenter: Katherin Joubran

Katherin Joubran¹, Lior Shmuelof¹, Simona Bar Haim¹

¹Ben-Gurion University of the Negev

0.4.vi Impaired sensorimotor transformations for balance in Parkinson disease are associated with future falls

Presenter: J Lucas McKay

Lucas McKay¹, Kimberly Lang², Sistania Bong¹, Madeleine Hackney², Stewart Factor², Lena Ting¹

¹Emory University and Georgia Tech, ²Emory University

learning:

Presenter: Philipp Wanner

Presenter: Dimitry Sayenko Dimirtry Sayenko¹, V.Reggie Edgerton², Yury Gerasimenko² ¹Houston Methodist Research Institute, ²University of California, Los Angeles

0.5 Coordination of gait

Location: Pentland suite (level 3)

0.5.*i* Muscle synergy complexity in children with cerebral palsy during the development of walking

Presenter: Annike Bekius Annike Bekius¹, Coen Zandvoort¹, Jennifer Kerkman¹, Andreas Daffertshofer¹, Annemieke Buizer¹, Jaap Harlaar², Nadia Dominici¹ ¹Vrije Universiteit Amsterdam, ²Delft University of Technology

0.5.ii Humans use multi-objective control to regulate lateral foot placement when walking

Presenter: Jonathan Dingwell Jonathan Dingwell¹, Joseph Cusumano¹ ¹Pennsylvania State University

0.5.iii Walking with narrow steps: Are we more stable through increased sensory contributions? A galvanic vestibular stimulation study

Presenter: Sjoerd Bruijn Sjoerd Bruijn¹, Jaap Van Dieën¹, Rina Magnani², Patrick Forbes³ ¹VU Amsterdam, ²Goiás State University, ³Erasmus MC

0.5.iv The spine in gait – a differentiated analysis of spinal rotary motion

Presenter: Ulrich Betz Heitmann², Helmut Diers¹, Philipp Drees¹

avoidance

Presenter: Brittany Baxter Brittany Baxter¹, William Warren¹ ¹Brown University

22

0.4.vii Effects of a single bout of cardiovascular exercise on balance

A comparison of different exercise intensities

Philipp Wanner¹, Theresa Müller¹, Klaus Pfeifer¹, Simon Steib¹

¹Friedrich-Alexander University Erlangen-Nürnberg

0.4.viii Neuromodulation of lumbosacral spinal networks enables independent standing after complete paraplegia

Co-chairs: Nicoleta Bugnariu University of North Texas Health Science Center, USA **Claudine Lamoth** University of Groningen, NLD

Ulrich Betz¹, Janine Huthwelker¹, Jürgen Konradi¹, Claudia Wolf¹, Ruben Westphal¹, Kjell

¹University Medical Center of the Johannes Gutenberg University Mainz, ²DIERS International GmbH

0.5.v Spatial updating of remembered goal position during barrier

0.5.vi Type of prosthesis influences functional performance and quality of life in patients with transtibial amputations

Presenter: **Ophélie Puissegur**

Ophelie Puissegur¹, Gordon Stevens², Elizabeth Ginzel², Rita Patterson¹, Nicoleta Bugnariu¹

¹University of North Texas Health Science Center, ²Baker O&P

0.5.vii Deficient tibialis anterior activity following inward perturbation during walking predisposes elderly to use stepping rather than ankle strategies to control balance

Presenter: Maarten Afschrift Maarten Afschrift¹, Friedl De Groote¹, Ilse Jonkers¹ ¹KU Leuven

0.5.viii Influence of required coefficient of friction on rate of shoe wear

Presenter: Sarah Hemler Sarah Hemler¹, Jessica Sider¹, Kurt Beschorner¹ ¹University of Pittsburgh

0.6 Cognitive, attentional and emotional influences

Location: Sidlaw suite (level 3)

Co-chairs: Anat Mirelman Tel Aviv Sourasky Medical Center, ISR John Stins VU Amsterdam, NLD

0.6. The effects of dual tasking and aging on event related potential (ERP) components of gait cycle

Presenter: Inbal Maidan

Inbal Maidan¹, Shiran Shustak¹, Dmitry Patashov², Eran Gazit¹, Boris Shapiro², Aviran Levy², Nir Giladi¹, Jeff Hausdorff¹, Anat Mirelman¹

¹Tel-Aviv Sourasky Medical Center, ²Holon Institute of Technology

0.6.ii The neural signature of impaired dual tasking in Idiopathic REM sleep behavior disorder patients: An fMRI study

Presenter: Kaylena Ehgoetz Martens

Kaylena Ehgoetz Martens¹, Elie Matar², James Shine¹, Joseph Phillips³, Matthew Georgiades¹, Ronald Grunstein⁴, Glenda Halliday¹, Simon Lewis¹

¹University of Sydney, ²Brain and Mind Centre, ³University of Western Sydney, ⁴Woolcock Medical Institute

0.6.iii An invisible hand: Automatic preparation for arresting a fall when viewing a handrail

Presenter: **David Cole** David Cole¹, Butler Blake¹, Mahmoud Mansour¹, Sarah Schwartz¹, David Bolton¹ ¹Utah State University

0.6.iv Embodiment of painful situations and its postural correlates

Presenter: Thierry Lelard ¹Université de Picardie

0.6.v Shift in attentional allocation during cognitive-motor dual-tasking following cognitive or physical training in healthy older adults

Presenter: Rachel Downey Laurent Bosquet⁷, Nicolas Berryman⁸

stimuli during standing

Presenter: Taylor Cleworth

0.6.vii Can split-belt treadmill training improve dual-task turning performance in patients with Parkinson's disease with Freezing of gait

Presenter: Nicholas D'Cruz ¹KU Leuven, ²Christian-Albrechts-University (CAU) of Kiel

0.6.viii Look where you are thinking

Presenter: Yogev Koren Bar-Haim¹ ¹Ben-Gurion University

12:30 on-wards Free time and half day tours of Edinburgh

For details on the half day tours, please refer to page 8

THURSDAY JULY 4

08:30 – 09:30 Keynote lecture 5

Location: Pentland auditorium (level 3) **Trevor Drew** University of Montreal, CAN A Cortical Network for the planning and execution of visually-guided gait

modifications

Chair: Yury Ivanenko IRCCS Fondazione Santa Lucia, ITA

09:30 – 10:00 Annual General Meeting Location: Pentland auditorium (level 3)

24

Thierry Lelard¹, Olivier Godefroy¹, Said Ahmaidi¹, Pierre Krystkowiak¹, Harold Mouras¹

Karen Li¹, Rachel Downey¹, Louis Bherer², Thien Tuong Minh Vu³, Kristell Pothier⁴, Brittany Intzandt¹, Tudor Vrinceanu², Thomas Vincent⁵, Anil Nigam⁵, Antony Karelis⁶,

¹Concordia University, ²Université de Montréal, ³Centre hospitalier Université de Montréal, ⁴University of Tours, ⁵Centre de recherche de l'Institut de Cardiologie de Montréal, ⁶Université du Québec à Montréal, ⁷Université de Poitiers, ⁸Bishop's University

0.6.vi Postural threat effects on perceptions of lower leg somatosensory

Taylor Cleworth¹, Ryan Peters², Romeo Chua³, J. Timothy Inglis³, Mark Carpenter³ ¹University of Waterloo, ²University of Calgary, ³University of British Columbia

Nicholas D'Cruz¹, Pieter Ginis¹, Jana Seuthe², Christian Schlenstedt², Alice Nieuwboer¹

Yogev Koren¹, Yisrael Parmet¹, Ilay Sofer¹, Ohad Ben-Shahar¹, Rotem Mairon¹, Simona

DETAILED PROGRAM

15:15 – 15:45 Refreshment break

Location: Strathblane & Lomond (level 0)

15:45 - 17:30 SYMPOSIA SESSIONS 13 - 15

10:00 – 12:30 Poster session 3 and exhibits

(Refreshment break from 10:00 - 10:30) Location: Strathblane & Lomond (level 0) Poster listings begin on page 71

12:30 – 13:30 Lunch and exhibits

Location: Strathblane & Lomond (level 0)

13:30 - 15:15 SYMPOSIUM SESSIONS 10 - 12

S.10 Virtual reality as a tool to alter multisensory perception and human *motor learning*

Location: Fintry suite (level 3)

Chair: Daniel Ferris University of Florida, USA Moderator: Karen Li Concordia University, CAN Participants:

Daniel Ferris University of Florida, USA **Jennifer Campos** Toronto Rehabilitation Institute, CAN James Finley University of Southern California, USA Karen Li Concordia University, CAN

S.11 Balance training using perturbations to prevent falls: Is it feasible and effective?

Location: Pentland suite (level 3)

Chair: Stephen Lord Neuroscience Research Australia, AUS Participants:

Tanvi Bhatt University of Illinois, USA Kiros Karamanidis London South Bank University, GBR Avril Mansfield Toronto Rehabilitation Institute, CAN Yoshiro Okubo Neuroscience Research Australia, AUS

S.12 The challenge of preventing stair falls: Understanding the individual contributions of, and interplay between, environmental and intrinsic factors

Location: Sidlaw suite (level 3)

Chair: Bradford J. McFadyen Université Laval, CAN Participants:

Richard Foster Liverpool John Moores University, GBR Alison Novak Toronto Rehabilitation Institute-UHN, CAN Neil Reeves Manchester Metropolitan University, GBR Mark Hollands Liverpool John Moores University, GBR Bradford McFadyen Université Laval, CAN

consequences

Location: Fintry suite (level 3)

David Anderson San Francisco State University, USA Participants:

Marianne Barbu-Roth Paris Descartes University, FRA Yury Ivanenko Fondazione Santa Lucia, ITA David Anderson Marian Wright Edelman Institute, San Francisco State University, USA Christine Assaiante Aix Marseille University, FRA

groups

Location: Sidlaw suite (level 3) Chair: Chesney Craig Manchester Metropolitan University, GBR Moderator: Clemens Becker Robert-Bosch Hospital, GER

Participants:

Chesney Craig Manchester Metropolitan University, GBR Kim van Schooten Neuroscience Research Australia, AUS **Will Young** Brunel University, GBR Claudine Lamoth University of Groningen, NLD **Clemens Becker** Robert Bosch Hospital, DEU Yuhan Zhou University of Groningen, NLD

S.15 STOP! Age-related changes in sensorimotor inhibition and the associated implications for impaired gait and balance control

Location: Pentland suite (level 3) Chair: Brett Fling Colorado State University, USA Participants:

Brett Fling Colorado State University, USA Rachael Seidler University of Florida, USA **Tibor Hortobagyi** University of Groningen Medical Center, NLD Anita Christie University of Western Ontario, CAN

17:30 – 18:00 Awards presentation ceremony

Location: Pentland (level 3)

19:00 – late Gala dinner

Location: Cromdale Hall (EICC, level -2) With entertainment provided by **Òr Cèilidh Band**

26

ToC

S.13 Early development of human locomotion and its functional

Chair: Yury Ivanenko Fondazione Santa Lucia, ITA Moderators: Marianne Barbu-Roth Paris Descartes University, FRA

S.14 Maximising interdisciplinary methods to assess falls risk in clinical

- 2019 ISPGR World Congress ends -

27

www.ispgr.org | @ISPGR | JUNE 30 - JULY 4

AWARDS

PROMISING SCIENTIST AWARD WINNER 2019

Sponsored by **Elsevier**, publishers of Gait & Posture Journal

The Promising Scientist Award acknowledges those who have performed superior research in posture and/or gait early in their career. The awards committee is pleased to announce this year's award recipient

Jenna Yentes University of Nebraska at Omaha, USA

Dr. Jenna Yentes received her PhD in biomechanics from the University of Nebraska in 2013. She is currently an Assistant Professor in the Department of Biomechanics at the University of Nebraska at Omaha, where she directs the INSPIRE research group. Her research

focuses on functional outcomes in those that suffer from pulmonary disease, namely chronic obstructive pulmonary disease. Dr. Yentes' group were the first to document biomechanical changes in gait in persons with chronic obstructive pulmonary disease. Jenna has also explored the clinical utility of locomotor respiratory coupling in this population. Her research has shown that non-varying coupling is related to energy expenditure. She has filed two patent applications related to a wearable technology for monitoring coupling. In addition, Dr. Yentes has published several methods papers regarding the use of nonlinear algorithms such as sample entropy with human movement data. Her work in this area has pushed for increased transparency regarding selection of parameters to be used in such algorithms, as many findings can be an artifact of parameter choice. She hopes to continue her work in this area, cultivating proper use and interpretation of nonlinear data.

Nonlinear analysis: Translating the theoretical into clinical applications

The popularity of nonlinear analysis has grown exponentially in the past 20 years. Yet, with many of the algorithms their biological interpretation or clinical translation remains ambiguous, which has led to a confusion of their use in the field of gait and posture research. Furthermore, careful parameter selection is

important to ensure results are not an artifact of parameter selection. In this presentation, I will focus on nonlinear tools to quantify coupling of biorhythms (i.e., walking and breathing) and further, how these tools have been used to inform clinical applications.

PSA presentation: Tuesday July 2, 09:30 – 10:00

EMERGING SCIENTIST AWARD WINNER 2019

Sponsored by **Elsevier**,

publishers of Gait & Posture Journal

The Emerging Scientist Award acknowledges those who have performed superior research in posture and/or gait within three years of their PhD degree. The awards committee is

pleased to announce this year's award recipient

Deborah Jehu University of British Columbia, CAN

The objective of Deborah's research has been to generate new insights into improving therapeutic intervention techniques, informing best practices in cognitive and mobility assessment, and increasing the knowledge on compensatory strategies

across different sensorimotor, cognitive, and psychological contexts in populations with cognitive and mobility disability. Deborah completed her PhD in Human Kinetics at the University of Ottawa, and has collaborated with researchers, interdisciplinary healthcare professionals, health authorities, and industry partners in Winnipeg, British Columbia, Ontario, Hong Kong, and Portland. Now funded by the Michael Smith Foundation for Health Research and working with Dr. Liu-Ambrose, Deborah is expanding her expertise to include implementation science and the cognitive contributions following therapeutic interventions in clinical populations.

Best practices for the assessment and therapeutic intervention of cognition and mobility in aging populations

A fall can be life changing and even fatal. Exercise is the most important corrective factor in improving cognitive

ELSEVIER

and mobility fall-risk factors. However, many interventions have been unsuccessful in decreasing fall-risk and/or falls, which may be a function of 1) the intervention itself or 2) the selected outcome measures. Design (i.e., frequency, intensity, type, and time) and delivery (e.g., intervention timing following injury) are important considerations for efficacious primary and secondary fall prevention interventions.

Ensuring that the outcome measures have adequate psychometric properties is critical in order to determine that improvements are a result of the intervention rather the winners! than measurement error. Including commonly reported Annike Bekius Vrije Universiteit, NLD fall-risk outcome measures across interventions would also improve between-study comparability. Notably, both the *Muscle synergy complexity in children with* intervention and assessment should be tailored according cerebral palsy during the development of to the population. In this talk, I will discuss best practices in walkina the assessment and therapeutic intervention of cognitive and mobility fall-risk factors across a variety of populations.

ESA presentation: Wednesday July 3, 09:30 - 10:00

CONFERENCE AWARDS

ISPGR is pleased to support the trainee members with presentation awards during the World Congress. Recipients The frequency and circumstances of falls of the various awards will be chosen from a panel of reported by unilateral lower limb prosthesis researchers based on several criteria including: users

- creativity and originality of research
- clarity of presentation
- level of understanding

The awards will be announced at the closing session on Thursday July 4.

BEST TALK BY A TRAINEE

Sutton Richmond Colorado State University, USA One best talk will be awarded to a student or post doc Bridging the callosal gap in gait: A mechanistic member of ISPGR who presents an oral presentation at the evaluation of white matter's role in bilateral World Congress. coordination

AFTAB PATLA INNOVATION AWARD

Thank you to **NDI Digital** for continuing to support the Aftab Patla Award. The ISPGR awards committee will offer two student poster presentation awards in honour of Dr Aftab Patla. One award will be for basic science and one for clinical science.

2019 ISPGR WORLD CONGRESS

ToC

BEST POS	TER FOR	POSTDOCTORAL	FELLOWS

In addition to the Aftab Patla Innovation Award, awarded to student poster presenters, ISPGR also offers two best poster awards for Postdoctoral Fellows. One award will be for basic science and one for clinical science.

TRAVEL STIPENDS

ISPGR is pleased to provide five trainee members with travel stipends based on their contributed submissions as selected by the Awards Committee. Congratulations to all

Sarah Hemler University of Pittsburgh, USA Influence of required coefficient of friction on rate of shoe wear

Janis Kim University of Illinois at Chicago, USA

Rosie Morris Oregon Health and Science University, USA Comprehensive measures of balance and gait in GBA mutation carriers and non-carriers in Parkinson's Disease

KEYNOTE SPEAKERS

Janice Eng University of British Columbia, CAN

Janice Eng is a Professor in the Department of Physical Therapy at the University of British Columbia and Director of the Rehabilitation Research Program at the GF Strong Rehab Centre. She has clinical training in physical therapy and occupational therapy, as

well as training in biomedical engineering. Her PhD was supervised by the late Dr. David Winter in the topic of 3D gait analysis. Since then, she has focused on stroke recovery and rehabilitation, from mechanisms to clinical trials, and more recently on implementation science. She is a Senior CANResearch Chair and has published over 200 peerreviewed journal publications in the field of neurological rehabilitation. Two of her stroke exercise programs, GRASP for improving arm and hand function and FAME for improving fitness and mobility, are used in over 1500 sites in 40 countries. Through a series of randomized controlled trials, her FAME program has been shown to improve mobility, postural reflexes, fitness, bone health, cognition, and reduce falls in people living with a stroke.

Keynote address: June 30, 17:00 – 18:00

Interventions to improve mobility after stroke: A journey from mechanisms and clinical trials to *implementation science*

Stroke is a common condition with 1 in 5 persons having a stroke after age 55. Furthermore, there is an increasing stroke occurrence in younger adults due to the epidemic of obesity and diabetes. While stroke affects multiple domains of function, regaining and improving walking is high on the priority of stroke survivors. This presentation will first describe mechanistic research aimed at understanding how muscle function, balance and walking are altered by stroke. In addition, data quantifying the intensity of inpatient rehabilitation and physical activity in the community of individuals after stroke will be presented. The development and efficacy of interventions to improve postural reflexes, balance, mobility and reduce falls after stroke will then be discussed, including novel interventions utilizing wearable sensors, as well as robotic exoskeletons. In particular, the concept of repetitions and neuroplasticity, in addition to the importance of the time window of

neurological recovery after stroke will be examined. Lastly, methods and theories to facilitate the implementation of complex stroke rehabilitation and exercise programs will illustrate translation of knowledge to real-world practice.

Herman van der Kooij University of Twente, NLD

Prof. Dr. ir. Herman van der Kooij, (1970) received his Phd with honors (cum laude) in 2000 and is professor in Biomechatronics and Rehabilitation Technology at the Department of **Biomechanical Engineering** at the University of Twente (0.8 fte), and Delft University

of Technology (0.2fte), the Netherlands. His expertise and interests are in the field of human motor control. adaptation, and learning, rehabilitation and wearable robots, diagnostic, and assistive robotics, virtual reality, rehabilitation medicine, and neuro computational modeling. He has published over 200 publications in the area of biomechatronics and human motor control. He was awarded the prestigious Dutch VIDI and VICI personnel grants in 2001 and 2015 respectively. He is associate editor of IEEE TBME and IEEE Robotics and Automation Letters. member of IEEE EMBS technical committee of Biorobotics, and was member of several scientific program committees in the field of rehabilitation robotics, bio robotics, and assistive devices. He is the founder and coordinator of the European FP7 project Symbitron, the national program wearable robotics and the national 4TU program Soft Robotics. He is the general chair of the IEEE Biorobotics conference in 2018 in the Netherlands.

Keynote address: July 1, 08:30 – 09:30

Studying human balance control by perturbations: Insights and applications for wearable robotics

We study human balance control during standing and walking by analysing the responses evoked by mechanical perturbations. We developed simple template models and more realistic neuro-mechanical models to interpreted and predict how humans respond to various mechanical perturbations and how they maintain balance. We translate these predictive models into human inspired controllers

of wearable robots. We demonstrated that with this translational approach we can enhance standing balance and the walking speed of subjects with an incomplete spinal cord injury wearing an exoskeleton.

Lynn Rochester Newcastle University, GBR

Lynn is Professor of Human Movement Science in the Institute of Neuroscience, Newcastle University. She is Director of the Clinical Ageing Research Unit, a translational clinical research platform focussed on experimental medicine

including a significant number of Parkinson's disease clinical trials. She set up and leads the Brain and Movement Research Group (BAM) (bam-ncl.co.uk), comprised of a multidisciplinary team of clinicians, clinical scientists and clinical engineers with a research focus on age related gait and mobility disorders. Her main research interests are in neurodegenerative disease (particularly Parkinson's of gait and falls, surrogate markers of disease and disease progression (in particular cognitive decline and falls risk), development and evaluation of novel interventions, and technological applications in healthcare using wearable sensors. She is Chair of the Parkinson's UK Excellence Movement Disorders Service at Newcastle upon Tyne Hospitals NHS Foundation Trust.

Keynote address: July 2, 08:30 – 09:30

Gait - A step in the right direction?

Key insights demonstrated that gait impairments disease) focused on the motor and non-motor mechanisms appear early even in the prodromal stages and drive early falls risk. They evolve selectively underpinned by multiple substrates enhancing our understanding of the mechanisms of gait impairment. Our findings promote an earlier, more preventative approach than previously recognised. Cognitive function, particularly attention, Network Evidence Based Practice Committee and takes a plays a significant early role and impacts on the visual key role in academic and professional leadership. She is an control of gait. We showed this is driven by shared honorary consultant physiotherapist and set up and leads pathological substrates such as cholinergic disturbance an academic physiotherapy service based in the Regional and abnormal proteinopathy. These findings have informed therapeutic approaches utilising attention as a substrate to improve movement amongst others. Conversely, gait impairments also provide insights into cognitive function, demonstrating their symbiotic relationship. This has delivered other benefits such as tools to predict declining How do we keep people with neurodegenerative disease cognitive function along with insights for therapeutic mobile and safe? This was the question we started with development. Extending the remit of measurement, we many years ago. It is a fundamental aim and the raison showed that different features of gait appear sensitive to d'etre for myself and my research group as we directed different dementia subtypes. Together our work suggests a concerted, collaborative effort over the subsequent that discrete patterns or signatures of impairment may decade. Why is this important? People who develop age support enhanced diagnosis even in early/prodromal related neurodegenerative conditions such as Parkinson's detection and a window of opportunity for neuroprotective have to cope with significant mobility problems. Walking therapy. (or gait) features at the top of their list of concerns. This is

ToC

www.ispgr.org | @ISPGR | JUNE 30 – JULY 4

understandable as it reduces independence and leads to an increased risk of falls. As if this is not enough, becoming less active adds to the overall burden of disease. To date managing gait problems remains a significant challenge not helped by the fact that an understanding of the causes is still evolving. Efforts to mitigate mobility loss by targeting gait impairments are therefore key and we need to start as early as possible.

Gait is complex and complex problems require complex solutions! Adopting a 360-degree perspective provides a platform to approach this, incorporating a multi-domain approach to include multiple contributing systems (including cognition and vision) and key pathological, neural and genetic substrates. We had two key objectives: to describe gait impairments from prodromal to late disease in PD; and to determine what drives them. Leveraging large and longitudinal datasets in well described patient cohorts was fundamental in combination with strategic collaboration and multidisciplinary input to help probe these objectives. We aimed to link our findings to novel measurement tools using wearable technology, and intervention development and this was coupled with a focus on the needs of our key stakeholders.

KEYNOTE SPEAKERS

Collectively our work has contributed to the role of gait as a clinical biomarker for enhanced diagnosis, disease monitoring and risk prediction and provided the basis for therapeutic development. We have linked our findings to develop the tools to translate our work to the real-world using low cost wearable technology. Importantly this has addressed an unmet need for industry, clinicians and patients – the key stakeholders of our work. We set out with an ambitious aim. We have learnt a lot along the way, most important of all being that none of this is feasible without the collaborators and team to deliver it!

Adolfo Bronstein Imperial College London, GBR

Adolfo Bronstein is Professor of Clinical Neuro-otology at Imperial College London and a Consultant Neurologist at Charing Cross Hospital and at the National Hospital for Neurology and Neurosurgery, Queen Square, London. He heads the Neuro-otology Unit in the Division of Brain Sciences at Imperial College.

He has written over 250 papers on clinical and basic aspects of eye movements, balance and spatial orientation. His book, 'Dizziness' received a 'High Commendation' at the 2008 BMA Medical Book prize Competition. Prof Bronstein is an enthusiastic teacher of neuro-otology and balance disorders in European and world neurological societies. In 2008 he obtained the Nylen-Hallpike Prize of the Barany Society for outstanding contribution to clinical neuro-otology. His current research interests are the high order mechanisms involved in central compensation of peripheral vestibular disorders as well as the role of small vessel white matter disease in balance dysfunction in the elderly. He was the founder and first chairman of the British Society of Neuro-otology, chairman of the neuro-otology panel for the European Federation of Neurological Sciences and president of the clinical neuroscience section of the Royal Society of Medicine.

Keynote address: July 3, 08:30 – 09:30

Visual control of posture

In order to isolate the visual contribution to the control of postural balance, experiments in which subjects are exposed to large-field visual motion (optokinetic) stimuli

are reviewed. In these situations, at motion onset, the visual stimulus signals subject self-motion, but inertial, vestibulo-proprioceptive cues do not. Visually evoked postural responses (VEPR) thus induced can be quickly suppressed by cognitive status or simple repetition of the stimulus, if the inertial self-motion cues available to the subject are reliable. In a conceptual model to be presented, the process of assessing the reliability, and degree of matching, of visual and inertial signals is carried out by a General comparator; in turn able to access the Gain control mechanism of the visuo-postural system. Complexity and congruency in the visual stimulus itself are assessed by a Visual comparator, e.g. the presence of motion parallax in the visual stimulus can reverse the sway response direction. VEPR can also be re-oriented according to the position of the eyes in the head and the head on the trunk. This indicates that ocular and cervical proprioceptors must also access the Gain control mechanism so that visual stimuli can recruit and silence different postural muscles appropriately. The overall gain of the visuo-postural system is also influenced by less easily defined idiosyncratic factors, such as visual dependence and psychological traits; interestingly both these factors have been found to be associated with poor long term outcome in vestibular disorders. The experimental results and model presented illustrate that the visuo-postural system is a wonderful example of interaction between physics (e.g. stimuli geometry, body dynamics), neuroscience and the border zone between neurology and psycho-somatic medicine.

References:

Visual control of balance in cerebellar and parkinsonian syndromes. Bronstein AM, Hood JD, Gresty MA, Panagi C. Brain. 1990 Jun;113 (Pt 3):767-79.

Automatic control of postural sway by visual motion parallax. Bronstein AM, Buckwell D.Exp Brain Res. 1997 Feb;113(2):243-8

Reorientation of a visually evoked postural response during passive wholebody rotation. Thurrell A, Bertholon P, Bronstein AM. Exp Brain Res. 2000 Jul:133(2):229-32.

Visual vertigo: symptom assessment, spatial orientation and postural control. Guerraz M, Yardley L, Bertholon P, Pollak L, Rudge P, Gresty MA, Bronstein AM. Brain. 2001 Aug;124(Pt 8):1646-56

Mechanisms underlying visually induced body sway. Guerraz M, Bronstein AM. Neurosci Lett. 2008 Sep 26;443(1):12-6. doi: 0.1016/j.neulet.2008.07.053. Epub 2008 Jul 24. Erratum in: Neurosci Lett. 2008 Nov 14:445(2):193.

Predictors of clinical recovery from vestibular neuritis: a prospective study. Cousins S, Kaski D, Cutfield N, Arshad Q, Ahmad H, Gresty MA, Seemungal BM, Golding J, Bronstein AM. Ann Clin Transl Neurol. 2017 Mar 22;4(5):340-346.

Trevor Drew University of Montreal, CAN

Trevor Drew undertook his undergraduate studies in physiology at Bristol University and then undertook a Ph.D. at the same institution under the supervision of Dr. David Armstrong. He received his Ph.D. in 1981. He then undertook postdoctoral

studies with Dr. Serge Rossignol at the Université de Montréal in Quebec, Canada. He accepted a position as assistant professor in the Department of Physiology in 1984 and became full professor in 1996. He transferred his affiliation to the Department of Neuroscience on its formation in 2013. His research is directed at the contribution of supraspinal structures to the control of visually-guided locomotion and particularly how we plan visually-guided modifications of gait. Much of his work has focused on the contribution of the motor cortex to the execution of gait modification but recent work has concentrated on the contribution to planning. This latter work has focused on the contribution of the posterior parietal cortex and, more recently, the premotor cortex. Each of these areas (in contrast to the motor cortex) shows increased neuronal activity prior to gait modifications, consistent with contributions to different aspects of planning, including: object localisation; limb selection; foot placement; and limb trajectory formation.

Keynote address: July 4, 08:30 – 09:30

A Cortical network for the planning and execution of visually-guided gait modifications

Even in the most mundane of situations, we continually modify our gait to manoeuvre around natural and man-made obstacles, such as the curbs on each side of a street. In more exacting circumstances, for example, walking in the mountains or playing sports, such modifications of gait become more critical and more complex. Common to all such gait modifications in healthy subjects is the use of vision to evaluate the terrain and to anticipate changes to the normal gait pattern.

Such anticipatory gait modifications are produced by a rich network of cortical and subcortical structures. In my presentation, I will discuss the cortical contribution to such visually-guided gait modifications with a particular

emphasis on the planning processes that are required to successfully negotiate a moving obstacle. These planning processes begin with the identification of the presence and the dimensions of an obstacle, together with the location of that obstacle with respect to the body. Subsequently, one must select the limb that will be the first to step over that obstacle and assure that the supporting (plant) limb is appropriately positioned in front of the obstacle.

Studies in cats, from multiple laboratories, have shown the importance of the motor cortex for the production of the pattern of muscle activity in the limb as it steps over an obstacle. However, the available evidence suggests that the motor cortex does not participate in the planning of that step. Instead, our studies point to the posterior parietal and premotor cortices (PPC and PMC) as being involved in the planning. Results from lesion and single unit recording studies in cat suggest that the PPC is important in estimating the relative location of an obstacle with respect to the body. However, there is little evidence that the PPC is directly involved in specifying the changes in muscle activity in a given limb during the approach to the obstacle. Instead our recent studies suggest that heterogeneous populations of cells in the PMC contribute to this transformation of a global signal into one that specifies the precise spatiotemporal pattern of muscle activity required to step over a moving obstacle.

In sum, the available evidence suggests a cortical network for the planning and execution of gait modifications that resembles that described in detail for the control of reaching in non-human primates. However, while reaching studies are generally made from a static position, the planning of gait modifications requires dynamic processes that must integrate and account for the movement of both the subject, and if necessary, objects in the environment. The studies summarized here, provide a starting point for understanding this complex behaviour. (Supported by the CIHR).

S.1 Virtual reality in motion: Moving posture and gait research forward with do-it-yourself vs turnkey systems

Chair: Anouk Lamontagne McGill University, CAN Location: Pentland suite (level 3) Moderators: Haylie Miller UNT Health Science Centre, USA Meir Plotnik Sheba Medical Center, ISR

S.1i

Complex problems require complex solutions - Dynamic postural control in ecologically valid virtual environments

Nicoleta Bugnariu¹, Haylie Miller¹, Rita Patterson¹, Linda Thibodeau²

¹University of North Texas Health Science Center, ²University of Texas at Dallas

BACKGROUND: Clinical assessments of sensory, perceptual and cognitive elements that influence postural control are often conducted in a fragmented way, one at the time. Likewise, common clinical balance and mobility assessments often have low sensory and attentional demands. The disconnect between these discipline-specific findings obtained while patients are seated (e.g. hearing loss, cognitive impairment), and the impact of these findings in the real world where patients need to maintain balance and walk in complex environments, while attending to cognitive tasks and social interactions, represents a barrier in defining the true effect of a particular impairment on postural control. **METHODS**: We used a high-end immersive virtual reality (VR) system (CAREN; MotekforceLink) with motion capture, surround sound with integrated standardized audiological tests and eye-tracking, to investigate multisensory integration and postural control in adults and individuals with Autism Spectrum Disorder (ASD). In study 1, we tested dynamic postural control in 19 young (M=27.2), 20 old adults with normal hearing (M=68.7), and 20 old adults with hearing loss (M=71.2). Participants completed single- and dual- tasks of standardized audiology tests during surface perturbations in standing and walking. In study 2, we assessed dynamic balance of 6 age-matched pairs of adults with and without ASD aged 18-43. Participants wore eye-tracking glasses (ETG 2.5w; SensoMotoric Instruments) that allowed binocular eye tracking at 60 Hz during natural, unrestricted head movement. **RESULTS**: Centre of pressure variability in mediolateral direction increased (p<.05) in adults with hearing loss vs. controls when performing the dual postural/cognitive auditory task. Older adults with hearing loss had longer reaction time for initiating compensatory stepping responses compared to controls (p<.01) both in single- and dual-task conditions. Self-selected gait speed was slower (p < .05) in adults with hearing loss vs. controls, but only as long as they attended to the auditory task. In study 2, we observed a wider range of head-eye strategies used by participants to foveate targets compared to data generated using lower-end VR, and guantified differences in ASD vs. controls in the use of head and torso segments during stepping and leaning behaviors. The integration of eye-tracking with the 180° surround VR revealed reduced fixation of static stimuli and less efficient tracking of moving stimuli that likely contribute to impairments in postural control in ASD individuals. **CONCLUSIONS**: When auditory or visual inputs are reduced or conflicting, perception of the environment is incomplete and the cognitive demands may be increased, potentially leading to maladaptive balance responses. High-end immersive VR systems are powerful tools for manipulating inputs in repeatable and scalable ways to parse the various sensory influences on static and dynamic postural control in different populations.

S.1ii

VR for investigating perception and action during locomotion and for balance and gait rehabilitation

Desiderio Cano Porras¹, Gabriel Zeilig¹, Rivka Inzelberg², Meir Plotnik¹

¹Sheba Medical Center, ²Tel Aviv University

2019 ISPGR WORLD CONGRESS

How do humans incorporate perception of gravity while walking? To what extent virtual reality (VR) technology contributes to engage neurological patients in balance and gait rehabilitation treatments? This presentation addresses this type of questions. The advent of VR, especially when combined with advanced motion capture that allows automated biofeedback, offers the unprecedented ability to manipulate visual perception and physical experience during balance and walking tasks. Mainly through this ability, VR has succeed to open new horizons for fundamental and applied research. First, we will present original research that introduces a paradigm in which participants walking on a treadmill are exposed to virtual inclinations (i.e. VR visual scenes simulating uphill and downhill walking). By testing conditions in which the inclination of the visual scene was either congruent or incongruent with the physical inclination of the treadmill, this paradigm allowed us to effectively interfere with perception-action coupling. Our findings contribute to unravel mechanisms of sensorimotor integration in the context of environmental transitions, and provide evidence for a visual perception of gravity during locomotion. Second, to assess the clinical impact of VR on the rehabilitation of balance and gait, we will discuss the results of a recent study reviewing the application of VR in clinical trials, and the conclusions from a recent report based on three years of experience using VR in routine clinical practice. Additionally, perspectives on the implementation and effects of different VR systems during rehabilitation of neurological patients will be presented. Although the systematic review identified studies with evidence that VR has advantages to promote motor learning and motivation, an overall poor methodological quality and a lack of theory-driven choices is a serious concern. Lastly, understanding the characteristics of VR is key for the design and planning of research (e.g. to dissociate the impact of visual cues vs. physical body-based cues) and for addressing specific sensory, motor and cognitive deficits during neurological rehabilitation. For example, to combine VR with other devices in order to, besides the visual input stimulation, integrate other sources of sensory cues (e.g. vestibular, haptic). In terms of VR-based rehabilitation, an evidence-based framework to incorporate theories of neuroplasticity and motor learning is needed. In particular, considering that VR facilitates the incorporation of motor learning principles through task-oriented repetitive training. One challenge is to develop an efficient transition of VR-based rehabilitation as a tool for routine clinical practice.

S.1iii

Characterization of pedestrian avoidance in a virtual environment using low-cost VR equipment

Marco Buhler¹, Anouk Lamontagne¹

¹McGill University

BACKGROUND: In recent years, cutting-edge and affordable virtual reality (VR) systems developed by the games industry have become widely accessible. The extent to which such systems provide the required accuracy for research and elicit behaviours that are analogous to those observed in the real word, however, is yet to be determined. We used a low-cost VR system to examine pedestrian circumvention strategies as a complex locomotor task required for community walking in a virtual environment (VE) and contrasted the strategies with those observed in the physical environment (PE). AIM: (1) To estimate the extent to which circumvention strategies in response to static and moving pedestrians in the VE differ from those observed in the PE; (2) To estimate changes in circumvention strategies with repeated practice in the two environments and; (3) To contrast circumvention strategies obtained two head mounted displays (HMD) (gamers HMD vs. research type). **METHODS**: Twelve participants were assessed while walking towards a target and avoiding a collision with pedestrians in a PE and VE (random order). The VE, viewed with the HTC VIVE (gamers HMD), simulated the PE. In the static obstacle (SO) condition, participants avoided one interferer that remained static at 3 or 3.5 m from the participants' starting position. In the dynamic obstacle (DO) condition, one interferer randomly approached from the left, middle or right $(\pm 40^\circ)$, 0°), towards a theoretical point of collision located 3.5 m ahead of the starting position. For the DO condition, 40 trials were recorded in 8 experimental blocks to estimate the effect of repeated practice. Two subjects repeated the experiment with the NVISOR SX60 (research HMD). **RESULTS**: Compared to the PE, circumventing static and moving pedestrians in the VE was characterized by slower walking speeds (SO: Δ =0.17±0.02m/s (mean ± 1SE); p<0.001, DO: Δ =0.13±0.04 m/s; p<0.01) and larger minimum clearances (SO: Δ =0.10±0.02; p<0.01, DO: Δ =0.10±0.02; p<0.01). No significant differences were observed between environments when contrasting the distance from the obstacle at onset of deviation (SO: p=0.17, DO: p=0.18). Similar behavior as a function of obstacle direction or location was observed in both environments. Furthermore, repeated practice caused a significant increase in average walking speed (p<0.05), which was similar between the VE and PE. In the participants who repeated the task with two HMDs, larger minimum distances, smaller distances at onset and slower walking speeds were qualitatively observed with the NVISOR vs. HTC VIVE. **CONCLUSIONS**: Although the enlarged obstacle clearances and slower walking speeds in the VE suggest the use of "safer" circumvention strategies, our results

show that VR can reproduce similar adaptations as a function of obstacle condition and repeated practice. Furthermore, differences obtained with the two types of HMD suggest that the characteristics of VR equipment can modulate the user's responses.

S.1iv

Low-cost virtual reality tools for gait assessment and rehabilitation

Anouk Lamontagne¹, Joyce Fung¹

¹McGill University

BACKGROUND: Virtual reality (VR) allows creating ecological scenarios for assessment and training of complex motor tasks. While there is emerging evidence on VR effectiveness for gait rehabilitation, the complexity, high cost and poor accessibility of VR systems can limit its use in clinical settings. Our team is exploring the use of low-cost VR solutions made possible with advances in the games industry and their applicability to locomotor rehabilitation. More specifically, we: (1) developed a VR assessment to quantify goal-directed navigation deficits in post-stroke unilateral spatial neglect (USN); (2) identified barriers and facilitators to the use of VR for USN evaluation in the clinical setting; (3) examined the impact of a low-cost omnidirectional treadmill on locomotor adaptations and (4) developed a VR intervention protocol involving low-cost VR equipment to promote community ambulation after stroke. METHODS: Low-cost immersive VR technologies and opensource game engines were used. In study 1, stroke participants with and without USN were assessed while navigating towards virtual shopping items located in different locations. In study 2, barriers and facilitators were identified using focus groups involving clinicians. In study 3, body kinematics were contrasted between walking on an omnidirectional treadmill vs. overground in healthy young participants. In study 4, an integrated knowledge translation approach was used to develop a VR training toolkit for community ambulation rehabilitation after stroke. **RESULTS**: In study 1, the VR assessment revealed greater heading errors and navigation times in participants with USN. In study 2, several barriers and facilitators to using VR for USN assessment were identified, including personal, institutional, client suitability and equipment factors. In study 3, different strategies for speed adaptation (cadence and/or step length) and trajectory reorientation (temporal coordination of head, thorax, pelvis) were observed during treadmill vs. overground walking. In study 4, scenarios targeting different dimensions of community ambulation (e.g. endurance, speed, postural transitions, traffic, cognitive load) were developed, allowing participants to train according to individually-tailored goals while progressing through levels of increasing difficulty/complexity. **CONCLUSIONS**: Low-cost VR tools show great potential for assessment and training of locomotor disorders. Notably, results show that VR can identify visual-perceptual deficits in post-stroke USN and their impact on goal-directed navigation. Addressing the identified barriers/facilitators could assist the adoption of VR assessment tools in clinical settings. Locomotor adaptations in VR, however, differ to some extent from those observed in the physical world. As the technology is rapidly evolving, future research should focus on not only the validation of VR tools but also on developing training paradigms exportable to different VR systems.

S.2 fNIRS data to understand cortical mechanisms underpinning exercise interventions

Chair: Jasmine Menant NeuRA, AUS Location: Fintry suite (level 3)

S.2i

Effects of step training in older people and people with Parkinson's disease on haemodynamic changes in cognitive and motor cortical areas during stepping performance and gait adaptability

Paulo Pelicioni¹

¹Neuroscience Research Australia

BACKGROUND AND AIM: There is accumulating evidence from functional near-infrared spectroscopy (fNIRS)-based studies of increased Prefrontal Cortex (PFC) activation when older people walk and perform a secondary complex task versus simple walking. This increased reliance on cognitive-motor control resources to maintain balance under challenging situations is also apparent in people with Parkinson's Disease (PD), who display inherent motor impairments and executive functioning deficits. Impaired stepping and reduced cognitive functioning are well-established fall risk factors in older people and more so in people with PD. In pilot studies, home-based volitional step training while playing computer games significantly improved balance, dual-task ability and cognitive functions in older people; such training modality is likely to equally benefit people with PD providing sufficient training dose and adequate initial supervision are given. Yet the neural mechanisms underpinning the effectiveness of this training type have not been studied. As part of two ongoing randomized-controlled trials (RCTs), we aim to investigate the effects of the following in-home computerised game playing training interventions on haemodynamic changes in cognitive and motor cortical areas using fNIRS during stepping and gait tasks: (i) seated cognitive-only training using a touch pad versus cognitive-motor step training using a step mat versus usual care in older adults (smart+step RCT); (ii) combined cognitive-motor step mat training and reactive step training versus usual care in people with PD (SAFE-PD RCT). METHODS: The smart+step involves 75 older adults and its active interventions for 6 months (120min per week). The SAFE-PD involves 44 people with PD. The active intervention involves a 3-month home-based cognitive-motor stepping training programme (40-80min per week), supplemented with two laboratory-based sessions of reactive step training. In both RCTs, participants are assessed at baseline prior to randomisation and then at three (SAFE-PD) or six months (smart+step). Haemodynamic changes are recorded with a 16-optode fNIRS system placed over the PFC and motor cortices while participants perform three cognitively-demanding stepping tasks on a computerised mat (both RCTs) and a gait adaptability test (SAFE-PD only). **RESULTS**: The trials are ongoing and full results will be presented at the ISPGR World Congress. CONCLUSIONS: We hypothesise that: (i) for the smart+step, the 6-month training programs will improve participants' cognitive performance in the cognitive training group and both cognitive and physical capacity in the cognitive-motor training group, and that such improved capacities will be associated with increased activity in the PFC region and motor cortices as applicable, (ii) for the SAFE-PD trial, the 3-month intervention will improve cognitive and physical capacities and increase PFC and motor cortices activity during the stepping and gait tests.

S.2ii

fNIRS data to understand the effects of rhythmic auditory cueing and acute aerobic exercise on cortical activation during walking

Rodrigo Vitório¹

¹São Paulo State University (UNESP)

BACKGROUND AND AIM: The ability to cognitively process the environment and formulate appropriate locomotor plans for navigation can be compromised with ageing and in neurodegenerative pathologies such as Parkinson's disease (PD). Ageing- and PD-related walking impairments are associated with increased risk of falling and decreased independence. Therefore, effective interventions aimed to maintain safe mobility in older adults and people with PD are essential. Although recent studies confirmed the involvement of functional alterations of the brain cortex to walking impairments, less is known about the extent to which therapeutic interventions are able to modify cortical activation related to walking. Rhythmic auditory cueing and aerobic exercise are two of the most common interventions used for gait rehabilitation in older adults and people with PD. However, the underlying neural correlates are unclear. Functional near-infrared spectroscopy (fNIRS) devices, which assess cortical activity through the haemodynamic response of the brain, can be used to fill this gap in the literature. This symposium presentation will cover studies using fNIRS to examine the effects of rhythmic auditory cueing and acute aerobic exercise on cortical activation during walking in the context of ageing and PD. **METHODS**: Protocols combining fNIRS data and spatiotemporal parameters of gait were used in two different experiments. Experiment #1 tested the effects of rhythmic auditory cueing in older adults. Cues were delivered with a digital metronome at preferred stepping frequency and participants were instructed to step in time to the beats. Experiment #2 is designed

to test the effects of a single 40-minute session of aerobic exercise (65% to 70% of the maximum heart rate; performed in a stationary bicycle ergometer) in people with PD. **RESULTS**: I will summarize findings from these two experiments and discuss them with those available in the literature. In short, findings from experiment #1 suggest that gait benefits (i.e. reduced gait variability) obtained with rhythmic auditory cueing were achieved through increased activity in multiple cortical areas. Although still preliminary, findings from experiment #2 suggest that prefrontal cortical activity slightly decreases after aerobic exercise in people with PD. **CONCLUSIONS**: fNIRS provides an innovative approach to assess brain cortical activity related to the control of human locomotion in interventional studies. fNIRS data can help researchers and health professionals to better understand the neural mechanisms underpinning the effectiveness of therapeutic interventions.

S.2iii

Assessing human locomotion through mobile brain imaging techniques: Opportunities, pitfalls and future directions

Eling D. De Bruin¹, Federico Gennaro¹, Patrick Eggenberger²

¹ETH Zürich, ²EMPA

BACKGROUND AND AIM: EEG and Functional near-infrared spectroscopy (fNIRS) have been involved in several studies related to human mobility. Both measurements hint towards promising opportunities, however, there are some pitfalls that need to be resolved before considering their routine clinical use in isolation or in combination. We discuss several pitfalls and propose research addressing them. Examples relate to validity, reliability and reproducibility of these methods in ecologically valid scenarios and in different populations. **METHODS**: Recent technological developments give rise to the expectation that EEG and movement artefacts related problems during human locomotion might be overcome. Several studies started using fNIRS for the assessment of functional brain activation during human bipedalism. fNIRS has the advantage being less prone to movement artefacts contamination. However, using fNIRS to study brain activity during locomotion has some limitations. Some of these disadvantages can be eluded with the help of a multimodal approach where fNIRS and EEG are used in combination. **RESULTS**: fNIRS measures concentration changes in both HbO2 and Hb simultaneously, which has shown useful to remove motion artefacts (Cui et al., 2010). Limitations of fNIRS technology include its limited penetration depth (1-2 cm) which only allows to assess changes in superficial cortical areas, as well as the limited spatial resolution of ~1 cm (Tong and Frederick, 2010). Additionally, strenuous physical tasks may affect fNIRS signals due to systemic vascular changes (Perrey, 2008). Currently no standardized fNIRS procedures and signal processing techniques exist to measure cortical activity during locomotion (Herold et al., 2017; Vitorio et al., 2017). To improve accuracy of fNIRS multi-distance measurement technique is recommended (Herold et al. (2017)), however, not many studies so far used this technique. The possibility of combining EEG and fNIRS measurement systems allows covering additional brain areas to assess effects in large-scale functional brain network connectivity, while providing greater spatial and temporal resolution. EEG detects very brief processes in the range of 100 ms but suffers related to spatial resolution. fNIRS provides good localization but the comparably slow vascular response limits temporal resolution. Hence, when both methods are simultaneously used they provide complementary information about neuronal and hemodynamic aspects of brain activation. Due to their tolerance to participants' motion artefacts and portability, experiments can be performed under real-life conditions. **CONCLUSIONS**: The last two decades have opened a new and fascinating "door" on the motor control research field investigating neuronal communication in human locomotion. This field of research is still in its fledgling state, however, is promising for revealing some aspects of the brain's role in human locomotion.

S.2iv

The role of the prefrontal cortex in automaticity of movement in neurodegeneration - findings from **fNIRS** studies

Anat Mirelman¹

2019 ISPGR WORLD CONGRESS

¹Tel Aviv Sourasky Medical Center

BACKGROUND AND AIM: It is now well accepted that gait and mobility are complex activities that are not solely automatic but rather rely on cognition resources, particularly in tasks that require more attention and faster processing speed, such as multitasking and gait adaptability. Traditionally, the role of cognition was assessed using dual-task paradigms (walking while performing a secondary cognitive task) which provided indications of the role of attention and executive function in the regulation of gait control. Functional near-infrared spectroscopy (fNIRS), an optical neuroimaging technique for investigating brain activation while participants move freely, enabled a direct investigation of cognitive resources during gait. This talk will focus on the contribution of prefrontal cortex to movement, its adaptation with task difficulty and changes in activation with age and neurodegeneration. **METHODS**: Data will be presented from several studies using FNIRS exploring mechanisms of motor-cognitive interactions in Parkisnon's disease and effects of intervention. **RESULTS**: Data from recent FNIRS studies will be discussed regarding the role of the frontal cortex in the control and automaticity of gait in Parkinson's disease and whether targeted interventions could reduce reliance on cognitive resources during walking. **CONCLUSIONS**: Points for discussion will be raised on automaticity of movement, potential interventions to enhance mobility and the use of FNIRS as an applicable clinical tool for assessment.

S.3: Balance, gait and falls post stroke: Steps towards a better future

Chairs: Vivian Weerdesteyn Radboud University Medical Center, NLD **Itshak Melzer** Ben-Gurion University of the Negev, ISR Location: Sidlaw suite (level 3)

S.3i

Analysis of brain lesion impact on balance and gait after stroke

Shirley Handelzalts¹, Itshak Melzer¹, Nachum Soroker ¹Ben Gurion University

BACKGROUND: Falls are among the most common medical complications after stroke. About 70% of persons with stroke (PwS) fall during the first six months after discharge from hospital or rehabilitation setting and it remains a considerable health concern throughout their life span. In addition to physical consequences associated with fractures and related injuries, falls may have serious psychological and social consequences such as functional decline, poor quality of life, dependency, social isolation and depression. Reactive balance control is essential for fall prevention, however, only a few studies have explored the effects of lesion characteristics (location and extent) on balance control in PwS. AIM: To assess the impact of lesion characteristics on reactive and anticipatory balance capacity, gait, and hemiparetic lower limb function in PwS. METHODS: Forty-six subacute PwS were exposed to forward, backward, right and left unannounced horizontal surface translations in 6 increasing intensities, while standing. Fall threshold (i.e., perturbation intensity that results in a fall into the harness system) was measured. In addition, the Berg Balance Scale (BBS), 6 Minute Walk Test (6MWT) and Lower Extremity Fugl-Meyer (LEFM) were measured. Lesion effects were analyzed separately for left- and right-hemisphere damaged (LHD, RHD) patients, using voxel-based lesion-symptom mapping (VLSM). **RESULTS**: Voxel clusters where damage exerted a significant impact on balance, gait and lower-limb function were found in the corticospinal tract, in its passage in the corona radiata and in the posterior limb of the internal capsule. Additional significant impact was found to lesions affecting the putamen and the external capsule. Balance, gait, and hemiparetic lower limb function showed much overlap of the corresponding 'significant' voxel clusters. Test scores of RHD and LHD patients were affected largely by damage to homologous regions, with the LHD group showing a wider distribution of 'significant' voxels. **CONCLUSIONS**: The study corroborates and extends previous findings by demonstrating that balance control, gait, and lower limb function are all affected mainly by damage to essentially the same brain structures, namely - the corticospinal tract and adjacent structures in the capsular-putaminal region.

S.3ii

Effect of perturbation intensity and motor-impairment on behavioral outcomes

ToC

Perturbation-based assessment and training for fall-risk reduction in people with chronic stroke:

Tanvi Bhatt¹

¹University of Illinois at Chicago

The spectrum of motor impairments and deficits in reactive balance continue to persist on a longer-term in hemi-paretic stroke survivors even after recovering ambulatory ability; predisposing them to environmental falls. Previous work has established the significance of perturbation-based fall-risk assessment and training in prediction and reducing fall-risk in healthy older adults. This talk will focus on translation of work from the healthy older adults to people with chronic hemiparetic stroke (PwHS). We examined feasibility of using stance support surface perturbations (slip and trip) to assess reactive stability control, compensatory stepping and fall-risk in PwHS and examined contributions from paretic and non-paretic limbs for recovery. Results indicate that a ~50% fall rate during slip-stance perturbation with paretic compensatory stepping under unconstrained conditions and with paretic limb when explicit instructions were provided. Recovery from slips was more challenging with > falls and lack of step initiation than trip perturbations which yielded > compensatory stepping responses and very few falls. PwHS demonstrated impaired intensity-scaling of reactive stepping responses compared to healthy age-similar adults. We subsequently also examined fall-risk in PwHS under both paretic and non-paretic limbs to overground gait-slips. The fall rate and stability control during overground slips was similar to stanceperturbations under both limbs when the perturbation intensity was small, however upon a longer slip, the falls under the paretic limb significantly increased, especially in those with greater lower limb motor impairment and gait abnormalities. We subsequently examined adaptation effects to a mixed slip-and-trip stance-perturbation training paradigm and effect of motor impairment on training-induced adaptations. Results indicated the ability of the high functioning, low impairment (HFLI) group to successfully tolerate large magnitude perturbations to rapidly improve stability control and lower fall incidence within 1st five trials. However the low functioning, high impairment group was able to demonstrate adaptation only after lowering perturbation intensity. Post-training both groups were able to demonstrate scaling to a higher intensity. and shorter-term retention up to several weeks. Lastly, we examined the ability of training-induced adaptations to generalize to novel opposing trip perturbations and effect of mixed-slip-and trip training on fall-risk and stability control. Findings indicate a positive transfer of training effects within the compensatory stepping response achieved by a direction specific amplitude modulation of step length and further ability of PwHS to adapt to mixed perturbation training by achieving a stability state that would be resilient to both slips and trips. These findings could be leveraged for designing protocols to enhance inter-limb generalization of training effects.

S.3iii

Sensorimotor adaptation post-stroke through the lens of muscle activity

Gelsy Torres-Oviedo¹, Pablo Iturralde¹, Digna de Kam¹

¹University of Pittsburgh

BACKGROUND AND AIM: Human movements are flexible as we continuously adapt to changes in the environment by recalibrating our motor commands and generating corrective actions. Sensorimotor recalibration occurs upon repeated exposure to predictable changes in the environment, whereas corrective actions serve as an immediate response to overcome sudden environmental changes. Corrective movements during walking are thought to simply reflect environmental transitions independently from sensorimotor recalibration (Morton and Bastian, 2006). However, recent studies suggest that corrective responses could be influenced by sensorimotor recalibration (Wagner and Smith, 2008). Thus, we asked if corrective motor commands are adapted and the extent to which this is a cerebral-dependent process. **METHODS**: We investigated cerebral involvement in adaptation of corrective actions using stroke as a disease model. We characterized changes in muscle activity in stroke survivors (n=15) and unimpaired individuals (n=15) before, during, and after walking on a split belt treadmill moving the legs at different speeds, which has been shown to induce sensorimotor recalibration (Reisman et al. 2005). Muscle activity was recorded bilaterally across 15 leg muscles. **RESULTS**: On the one hand, we found that corrective muscle responses in stroke survivors and controls were equally indicative of sensorimotor recalibration of gait. On the other hand, the steady state structure of muscle activity post-stroke in the novel split

environment differed from that of controls. This indicates that stroke survivors have a limited ability to adjust movements to the new environmental demands. **CONCLUSIONS**: Corrective responses are indicative of sensorimotor recalibration of the motor system and this recalibration process does not require intact cerebral structures. This is the case even if muscle activity after cerebral damage is impaired in an altered environment. Taken together, our results suggest that the sensorimotor recalibration to generate motor commands and the execution of those commands are partially dissociable processes. The recalibration process does not require cerebral structures, whereas the execution process does. From a clinical perspective our results are interesting because they suggest that sensorimotor recalibration could be exploited to induce gait rehabilitation.

S.3iv

Minor stroke, major balance problems?

Jolanda Roelofs¹, Ingrid Schut², Alfred Schouten², Alexander Geurts¹, Vivian Weerdesteyn¹

¹Radboud University Medical Center, ²Delft University of Technology

BACKGROUND AND AIM: Due to successful thrombolysis, an increasing part of the post-stroke population consists of individuals who have sustained a 'minor stroke'. Thus far, this group has received very little attention, both clinically and scientifically, with regard to the possible motor consequences. Their usual care mainly focuses on prevention of a new stroke. Yet, persons after a minor stroke may still experience subtle balance and gait impairments, which are not always visible to the naked clinical eye. So far, the prevalence of these subtle impairments and their implications for daily life functioning are not clear. **METHODS**: This talk will summarize the evidence regarding the consequences of a minor stroke on physical capacity and functioning, with a particular emphasis on the results of two cohort studies we have recently conducted. Both studies included a (sub)group of people > 6 months after minor stroke with (almost) complete recovery of leg motor impairments (Fugl-Meyer assessment of the lower extremity ≥ 24). We will discuss the results of clinical and lab-based balance and gait tests, as well as data on falls and physical activity in daily life. **RESULTS**: Persons after minor stroke walked on average 0.5 km/h slower and scored 1.9 points lower on the mini-Balance Evaluation Systems Test (mini-BESTest; range: 0-28) compared to healthy age-matched controls. Thirteen percent of the persons after minor stroke scored near-maximal on the mini-BESTest, whereas this was the case for 61% of the controls. These impairments in dynamic balance capacity were also reflected by the lower perturbation intensities that persons after minor stroke could sustain with a single step and by the impaired reactive step quality after translational perturbations on a moving platform. During stepping from stance towards illuminated targets that sometimes moved during mid-step, minor stroke survivors placed their foot further from the new target position (i.e., made larger errors) than controls. Furthermore, 21% of the persons after minor stroke showed an asymmetric kinetic contribution of each leg to standing balance. With regard to daily life, persons after minor stroke fell twice as often as controls. In addition, the total intensity of daily physical activity (i.e., standing, walking, running, cycling) was lower for minor stroke participants compared to controls, whereas no significant differences were found in total time or volume (i.e., time x intensity) of physical activity. **CONCLUSIONS**: Individuals after minor stroke who present with (almost) complete clinical recovery of leg motor impairments may still show substantial balance and gait impairments. Given the double fall rates in this population, these balance and gait impairments appear to be clinically relevant. These results may point at an important unmet clinical need in the minor stroke population.

S.4: Going from here to there and beyond: Fundamental theories and applications from what we have learned about human navigation of cluttered environments

Chair: Anouk Lamontagne McGill University, CAN Location: Fintry suite (level 3)

S.4i

Meeting the brief history of human biped navigation research head on Bradford McFadyen¹ ¹CIRRIS-Université Laval

Human biped navigation, like all human movement, reveals a fusion between the person and the environment. We can only safely navigate when we properly attend to and anticipate the combined underlying personal and environmental aspects. Yet, effective and safe navigation is threatened by impaired personal capacity and precarious elements within the natural and built environment. While human biped navigation has evolved over millions of years, formal scientific study of it has only significantly progressed over the past few decades. This research has provided evidence of visual-locomotor coordination underlying anticipatory locomotor adjustments relative to environmental topography and social context. Different theories regarding the roles of anticipatory versus on-line control of bipedal navigation have been proposed along with control variables such as personal space and time to contact that drive our locomotor adaptations. In this talk, I will lay out some of the current evidence from our and other laboratories with respect to theories and the control variables for human biped navigation, as well as briefly discuss the evolution in protocols that have been used including both real and computer-generated environments. In addition, I will discuss some of the advantages and disadvantages of transferring current evidence and protocols to the clinic in relation to assessing and intervening in navigational capacity following acquired brain injury.

S.4ii

Control laws that govern people's actions when interacting with other people and other objects in different environments

Michael Cinelli¹

¹Wilfrid Laurier University

Walking safely through a cluttered environment requires avoiding static and moving obstacles and, more specifically, other pedestrians. Fortunately, collisions between pedestrians or other objects rarely occur because vision plays a key role in safely and efficiently guiding routes away from collisions and towards open spaces. Visual information about an environment is gathered through eye movements, which allows individuals to appropriately adapt locomotion in response to obstacles. In this way, vision helps pedestrians to select pathways that will guide them towards openings and away from structures that would cause injury. Avoidance behaviours can be affected by fundamental differences in an object's movement (i.e., stationary vs. moving) and/or physical (i.e., human vs. nonhuman) characteristics. The ability to perceive an object's characteristics and make appropriate behavioural adjustments to avoid a collision is critical to safe locomotion in a dynamically changing environment. My research examines safe human locomotion in cluttered environments, which is affected by the dynamics between the person and the environment, such that changes to the person and/or the environment should result in a change in actions. My presentation will focus on manner in which people interact with other people in different environments, how they use visual information to guide their avoidances, and whether visual information and avoidance behaviours are consistent regardless of the objects' physical or movement properties. The following control laws that govern pedestrians' actions will be discussed: 1) when passing through an aperture created by two people, pedestrians will account for the personal space requirements of both people resulting in more cautious behaviours compared to passing through similar sized poles; 2) Virtual Reality (VR) elicits behaviours that are not consistent with real world environments when constraining actions, however, when people are free to choose their own pathway, avoidance behaviours in VR match those in real world; 3) in situations in which a future collision is imminent (i.e., 180° collision course), pedestrians' will use time-to-contact to initiate a change pathway and maintain a consistent temporal distance only if the approaching human is moving along an uncertain path; 4) there are sex-differences in collision avoidance behaviours with an approaching female; and 5) gaze behaviours are directed mostly towards an approaching pedestrian's trunk when preparing an avoidance behaviour. This type of information will help expand crowd simulation models used in many industries (film, security, architecture) to accurately simulate person-person interactions in natural environments.

S.4iii

Collision avoidance between two pedestrians: How future risk of collision can be used to describe motion adaptations? Is virtual reality relevant to study interactions between pedestrians?

Anne-Hélène Olivier¹

¹University of Rennes / MimeTic Team

Interactions between individuals and their environment represent the basic synergies of our daily life. In this context, this presentation will focus on the collision avoidance task between two pedestrians. Following the assumption that collision avoidance is a reciprocal task, we suggested a mutual variable named MPD to describe such an interaction. MPD is a continuous function of time that corresponds, for each instant of the interaction, to the future distance of closest approach based on pedestrians' current position, orientation and speed. Its value then represents the future risk of collision. Any change in MPD value in time corresponds to an adaptation of pedestrians' motion. We designed an experiment paradigm, where 30 pedestrians, by dyad having 90° crossing trajectories, were asked to walk to the opposite side of a gymnasium and avoid any collision on their path. Our results showed that pedestrians adapt their motion only when required, i.e., when MPD at the beginning of the interaction is too low (<1 m). Based on the temporal evolution of MPD during the interaction, the avoidance strategy can be described according to three successive phases: observation where MPD(t) is constant, reaction where MPD(t) increases to acceptable values by adapting locomotion and regulation where MPD(t) reaches a plateau. This regulation phase showed that the collision avoidance task is solved before the crossing. When studying individual contributions to MPD evolution, results showed that both pedestrians contribute to the collision avoidance task. Nevertheless, the pedestrian crossing second contributes more than the one crossing first, suggesting asymmetric contribution depending on the role in the interaction. While these results are useful to understand interactions between pedestrians, the control of the experimental variables is complex. We therefore provided effort to validate Virtual Reality (VR) as a relevant tool to study interactions between pedestrians because it allows a strong experimental control and it offers safe situations that can be of interest when considering specific population. Reproducing the same experimental setup as in real conditions, we asked 17 participants to perform a collision avoidance task with a virtual walker. They can navigate in the virtual environment using several locomotion metaphors (including a joystick as well as full-body motions). Based on the evolution of MPD during the interaction, results showed that motion adaptations performed in VR are qualitatively similar as in real conditions, despite some quantitative differences. These results opens perspectives in the use of VR to develop new experimental paradigms, as well as to study specific populations where real conditions setup can be challenging.

S.4iv

Modeling and simulation of human navigation Julien Pettre¹

¹Inria

The simulation of human navigation, and by extension, crowd simulation, is a very active research field with a wide range of applications, including architecture design, autonomous vehicle control, crowd management and safety, visual effects for movies or video games. Research in Human Movement Science (HMS) is a great source of inspiration for the design of new simulation models and algorithms. This presentation will give an overview of the research questions addressed in the field of crowd simulation, and how they connect to HMS. A specific category of crowd simulation algorithms, called microscopic approaches, simulate a crowd as a set of agent moving independently, and interacting together. Each agent is equipped with a set of rules that reproduce the way humans navigate in their environment. More specifically, agent influence one another motion according to the a model of local interaction. The presentation will present several examples of such model of interaction, and explain their evolution in time. Crowd simulation started with most basic agents represented as charged particules, progressively moving toward more evolved agents equipped with simulated perception systems, and capable of controlling their motion to what they virtually perceive. The benefit of transdisciplinary approaches - including the role of HMS - will be highlighted and discussed. We will conclude the presentation by listing the questions remaining open in the field.

S.5: Falls prevention should start in middle age - Lessons on prevention from cardiology may advance fall prevention in old age

Chair: **Stephen Lord** *Neuroscience Research Australia, AUS* Location: Sidlaw suite (level 3)

S.5i

Is the middle-aged patient still a Jedi? Estimating declines in capacities required to successfully respond to a perturbation while walking

James Richardson¹

¹University of Michigan

BACKGROUND AND AIM: The ability to respond successfully to a perturbation while walking, during the approximate 350 ms available, requires near optimal neuromuscular and/or short latency neurocognitive functions. Clinicians and patients can be be falsely reassured that these essential neuromuscular and neurocognitive attributes are fully intact if the patient does not report falling. However, this is no more valid than concluding that a patient has no cardiac risk factors if s/he has not yet had a myocardial infarction. Therefore the aim of this presentation is to present one possible model of perturbation response, and to provide evidence that the essential neuromuscular and neurocognitive attributes upon which this response model depends (distal proprioceptive precision, short latency inhibitory processing, simple processing speed, and rate of torque generation in proximal muscles) decline in a sub-clinical manner during the middle years of life. We propose that this early decline can lead to falls later in life, analogous to the insidious progression of known cardiac risk factors which can lead to later life myocardial infarction. **METHODS**: Nerve conduction studies, the most objective measure of peripheral neuromuscular function, are known to decline during mid-life. These will be correlated with a laboratory-based means for determining frontal plane foot/ankle proprioceptive thresholds, with special reference to nerve conduction parameters in the fully normal range. Additionally, a novel means for determining short latency (400 ms) inhibitory processing accuracy and simple reaction time will be evaluated across mid-life age groups. **RESULTS**: Nerve conduction studies in healthy subjects without neuropathy demonstrate negative correlations with frontal plane foot/ankle proprioceptive precision, $(R/p = -.737/.002 \text{ and } -.494/.061 \text{ for fibular conduction velocity (m/s) and amplitude (mV), respectively). Additionally,$ short latency inhibitory processing accuracy and simple reaction time decline with age in healthy subjects younger than 50 years old (R/p = -.436/.004 and .338/.027, respectively). **CONCLUSIONS**: Clinicians and patients often do not detect subtle decrements in neuromuscular and neurocognitive functions which appear to begin before age 50, but appear to have functional relevance with regard to the deceptively athletic capacity to successfully respond to a perturbation while walking. However, the evidence presented suggests that with further prospective work we may be able to arm clinicians with tools sufficiently sensitive to detect these subtle declines, and in so doing track fall risk factors from mid-life on as is currently done for cardiac disease, allowing intervention before the "falling disease" becomes manifest.

S.5ii

Falls in middle age - A neglected issue?

Michele Callisaya¹

¹University of Tasmania

BACKGROUND AND AIMS: Falls are a major health issue causing considerable injury, morbidity and mortality. Most work to date on falls prevention has occurred in older adults (>65 years) with approximately 1 in 3 community-dwelling older people falling each year. We have shown a similar incidence of falls in both men (29.4%) and women (44.7%) of 'late' middle-age (60-64 years). Others have reported an incidence of falls in middle age (age 45-64 years) as high as 1 in 6 in a 3-month period. However this middle-aged group of women has largely been ignored in the context of falls prevention.

This presentation will outline findings from the literature including from our longitudinal study of risk factors and circumstances of falls in middle aged women (PreFALL). We will also describe more novel methods (functional near infrared spectoscopy) currently being trialled to understand and assess falls risk in healthy populations. **METHODS**: PreFALL is a cohort of women who were assessed in 2011-12 on a number of factors including lower limb muscle strength and balance. In 2017, two hundred and eight one women returned (average age=55 years; range 42-63) for a comprehensive falls risk assesement including balance, mobility, strength, cognition, depression, physical activity, fear of falling and incontinence. Falls and their circumstances were ascertained prospectively via questionnaire over 12 months. **RESULTS**: We will present the results of the PreFALL study that shows balance and mobility begin attenuating in midlife. We will also present the role of functional near infrared spectroscopy and its potential in predicting falls in healthy populations. **CONCLUSIONS**: Our findings indicate that falls are not only a problem in older age, but also in middle age. Like in the fields of cardiology or even dementia, where factors in midlife are used in the prediction (and ultimately prevention) of future disease, a focus on falls prevention in midlife should be considered a key component of maintaining good health into older age.

S.5iii

What people can do and what they actually do; Self-efficacy in the self-management of falls prevention

Mirjam Pijnappels¹

¹Vrije Universiteit Amsterdam

BACKGROUND AND AIM: Gait characteristics on the quantity and quality daily life gait relate to falls and discriminate between people at risk of falls, already at late midlife. This relation between gait quality and falls appears modulated by self-perceived gait stability. An inadequate perception of one's own abilities may result in selecting inappropriate motor behaviour strategies and errors in daily life tasks could lead to falls. Age-related physical and cognitive decline might augment an inadequate self-efficacy. This presenation will focus on disparities between self-perceived and actual physcial abilities in stepping tasks and how a mismatch between what people can do and what they actually do can be derived from daily life gait characteristics; as well as on a new paradigm to detect such disparities in healthy older populations. METHODS: In the VIBE study, 284 relatively healthy older individuals (65 years and older) were tested on their physical abilities, self-perceived abilities and cognitive performance at baseline and after one year. They also wore an accelerometer on their lower back twice for one week, to monitor the amount of daily life physical activities, and to quantify daily life gait characteristics. During the 12 month follow-up period, the incidence of falls and participants' self-efficacy and health status was monitored monthly using questionnaires and telephone calls. A subsample of the VIBE cohort performed additional measurements in a stepping down paradigm, as to capture participants' self-perceived ability in their motor behaviour strategies when selecting either a heel or toe landing when stepping down level changes of different heights. **RESULTS**: Outcomes of measures of participants' actual and self-perceived abilities will be presented, as well as their daily life amount and guality of daily life gait. We observed disparities on the individual level between participants' actual abilities and their motor behaviour reflecting their self-perceived ability, as well as in their physical activity characteristics. **CONCLUSIONS**: People seem not all to select motor behavioral strategies and physical activities levels according to their actual abilities. Although these behavioral choices seem task and time-specific, they may indicate a higher risk of falling in the case of overestimation. Underestimation might induce a lower risk of falling due to inactivity and avoidance of exposure to challenging situations, at least on the stort term (commonly evaluated over one year). However, on the longer term, it may boost physical and functional decline and increase risk of falls as a consequence of unsuccessful ageing. Active ageing may be hard to achieve without an increase in fall risk. Yet, similar to cardiac risk factors, people should be aware of the their short and long term fall risk and be educated from early ages on how to monitor their self-efficacy in self-management of preventing falls.

S.5iv

Modifiable fall risk factors and the application of personalized medicine

Kim Delbaere¹

¹Neuroscience Research Australia, UNSW

BACKGROUND AND AIM: Aging encompasses functional and structural changes in both central and peripheral sensorimotor systems, with substantial impacts on stability and falls. The ability to stay upright requires coordination of sensory and neuromuscular systems, as well as higher-level cognitive processing. Furthermore, certain affective parameters, such as depression and fear of falling, may also influence fall risk beyond the effects of neuromuscular and cognitive attributes. This talk will discuss how sub-optimal age-related changes in specific physical, affective and cognitive factors affect fall risk and preventative strategies. **METHODS**: 1,203 participants (71±13yrs; 6559), including 500 healthy older people and 703 people with balance disorders (dementia, N=175; multiple sclerosis, N=210; Parkinson's disease, N=318) have been tested on sensorimotor function, cognitive function and affect and were follwed up for falls. **RESULTS**: Concomittant deficiencies in physical, affective and cognitive function are common in normal ageing. An increased risk of falling is often the result of an accumulation of sub-clinical, non-symptomatic processes that summate over time across this triad. At the same time, a range of diseases and age-related health conditions can also cause physical disability that increase fall risk. Our results confirm that deficits in cognition (executive function) and affect (depressive symptoms, fear of falling) are at least equally important as sensorimotor function for fall prediction and should therefore be included in fall-risk assessments. A suite of reliable and sensitive clinical measures have been identified that detect subtle changes in peripheral neuromuscular function, cognitive processing speed, and psychological distress; and guide a more tailored approach to fall prevention. **CONCLUSIONS**: Normal ageing is associated with changes in gait and increased risk of falling. Mental and physical capacities are even more strongly affected in people with Parkinson's disease, Alzheimer's disease, or a history of stroke, as their disease symptoms progress. Targeted fall prevention strategies are important in older people at high risk of falls; however, similar to 'healthy ageing', fall prevention should not abruptly start at the age of 65. Fall prevention strategies should be adopted at younger ages; for example by maintaining physically and mentally active lifestyles. Fall risk profiling should be used to identify long-term risk factors and offer guidance towards lifestyle changes (e.g. exercise), preventive medical treatments (e.g. cataract) and education. Crucially, the general public, as well as clinicians, need to recognize falls are not an inevitable consequence of old age and understand their risk factor profile in the same manner many people currently know their cardiac risk factors. The application of personalized medicine guided by basic principles for self-management should be the next frontier in fall risk management.

S.6: Turning as measure of functional mobility: When biomechanics, neural control, and technology come together

Chairs: Martina Mancini Oregon Health & Science University, USA Fay Horak Oregon Health & Science University, USA Location: Pentland suite (level 3)

S.6i

How is turning different from straight ahead gait, how we think it is structured, and how it can be enhanced

Marco Schieppati¹

¹International University of Health, Exercise and Sports, LUNEX University

During our everyday activity, linear walking is intermingled with turns or steering courses when moving within the environment. The underlying biomechanical pattern requires adapted muscle activation for progression. Muscle-synergy studies suggest that rectilinear and curvilinear walking share a unique motor command and that fine-tuning of synergies during curvilinear conditions adapts the kinematic strategy to the biomechanical requirements. The strategy helps exploit gravity when steering, much as we do during gait initiation. Medio-lateral gravity torque is produced by appropriate foot placements that exploit gravity by letting-go and braking spells in order to produce the appropriate centripetal force. Turning implies trunk rotation over the stance leg. This can be studied by stepping in place on a rotating platform while maintaining a fixed body orientation in space. This procedure elicits a post-effect consisting in inadvertent turning while stepping in place eyes closed (podokinetic after-rotation, PKAR). Not surprisingly, voluntary turning while stepping in place also produces a post-effect similar to PKAR. The post-effect of voluntary turning shares all the features of PKAR, and both take place inadvertently, suggesting that the command to turn might share the same neural circuits underpinning the behaviour produced by podokinetic stimulation. Asymmetric axial muscle vibration also produces turning while stepping. PKAR is modulated by delivering asymmetric vibration to paravertebral muscles. Right-sided vibration reduces or reverses clockwise PKAR, whereas left-sided vibration increased PKAR velocity. Under all conditions, changes in foot step angle are coherent with body angular velocity. Hence, both PKAR and vibration effects and the post-effect of voluntary turning appear to depend on a common mechanism that possibly integrates effects on the straight ahead and inflow from proprioceptors. Curvilinear trajectories represent a challenge for patients affected by movement disorders. Freezing is not uncommon in patients with Parkinson's disease (PD) during turning. However, PD patients can learn to produce turning while stepping through appropriate training and this capacity translates into improved overground curved walking. Repeated sessions of podokinetic stimulation, requiring a progressively larger effort, favour the production of PKAR and curved walking in PD. Post-training, the velocity of walking increases, more so for the circular than the linear trajectory.

S.6ii

The quality & quantity of real-world turns are poorer in prospective fallers Lorenzo Chiari¹, Julia Leach¹, Pierpaolo Palumbo¹, Stefania Bandinelli², Sabato Mellone¹

¹Alma Mater Studiorum - Universita' di Bologna, ²Local Health Unit Tuscany Centre BACKGROUND AND AIM: Although turning has been reported as one of the leading activities performed during a fall, and falls during turning result in 8-times more hip fractures than falls during linear gait, the quantity and quality of turns resulting in falls remain unknown since turns are rarely assessed during activities of daily living. Our hypothesis is that turning difficulty in real world activities is an early sign of balance instability and may be indicative of elevated fall risk. **METHODS**: We used in-home activity monitoring methods to investigate the relationship between turning strategies and fall risk in a high-functioning cohort of 160 community-dwelling older adults (a subsample of the InCHIANTI study) (Leach et al., 2018). Turn measures and activity rates were guantified. Fall incidence within 12 months from continuous monitoring defined fall status. **RESULTS**: Based on the analysis of 718,582 turns we found future recurrent fallers to exhibit both lower turn quantity and quality compared to the future non-/single fallers across a one-week monitoring period. Future recurrent fallers turned less often throughout their day and appeared to be less stable during one of the most common turn types (i.e., the 90° turn), as expressed by longer turn durations, lower turn velocities, and more steps utilized to complete the turn. Additionally, recurrent fallers walked slower, walked/turned less, and were more sedentary throughout their day. There was no difference in the overall active rate between the two groups, suggesting that impaired gait and turning ability, specifically, may have served as a significant contributing factor to the elevated fall risk within this cohort. **CONCLUSIONS**: Given the fact that 90° turn is the most unstable type of turn neurorehabilitation could focus on modifying turning strategies for 90° turns, with an emphasis on scaling turning speeds at different speeds of walking. Assessment tools targeting turning ability should also be adopted (e.g., the L-Test). If instrumented, as in the instrumented Timed Up and Go test, turn quality could be quantified and monitored throughout the duration of rehabilitation. Assessing turn quality via wearable sensors would indeed enable one to determine the efficacy of specific intervention strategies. Since directly impacting and improving turning ability lies in the forefront of our efforts to prevent future falls, adopting a neurorehabilitation approach with quantitative capabilities is essential.

S.6iii

Turning deficits in patients with Parkinson's disease and the role of the prefrontal cortex during turning

Inbal Maidan¹, Anat Mirelman¹, Jeffrey Hausdorff¹

¹Tel Aviv Medical Center

BACKGROUND AND AIM: Turning has been implicated as a complex task that requires both motor and cognitive resources. For patients with Parkinson's disease (PD), turning impairments are common features of gait disturbances, even in early stages of the disease, that are exacerbated with disease progression and can be a trigger for freezing of gait, falls, and reduced independence. Previous studies documented motor changes of turning in PD including impaired axial coordination, reduction of spatial gait parameters, a greater number of steps, and more time to complete a turn. In contrast, the role of cognition in performing turns is more controversial. Intuitively, one could suggest that turning ability and the recruitment of the prefrontal region would be mediated by cognitive abilities mainly associated with motor planning and attention. Indeed, some evidence suggests that turns become slower and less efficient in the presence of a cognitive load, supporting the idea that turns demand attention and prefrontal activation, however, this evidence is indirect. Therefore, the aim of this work is to provide direct evidence on the role of prefrontal cortex during turns in PD patients. **METHODS** AND RESULTS: Prefrontal activation during turns was investigated using functional near infra-red spectroscopy (fNIRS) in patients with PD. Interestingly, we found that PD patients use the prefrontal cortex during turning to a lesser extent than during straight-line walking. In addition, the degree of prefrontal activation during turning was related to background motor abilities, in particular ambulation function, showing that patients with better mobility reduced activation more than patients with worse mobility. Moreover, in another study that included patients with freezing of gait (FOG), we observed that during turns with freezing, i.e., unsuccessful turns, prefrontal cortex activation increased, compared to straight-line walking. In contrast, during turns without freezing, i.e., successful turns, prefrontal activation decreased, compared to straight-line walking. **CONCLUSIONS**: These findings demonstrate that during turning the prefrontal cortex plays a different role from straight line walking that may depend on the motor abilities of the patient. Higher prefrontal activation during turning in patients with relatively worse ambulation and FOG may reflect a compensatory attempt at improving turning performance. This possibility is consistent with a proposed model of gait failures in PD which posits that in the presence of reduced motor automaticity and poor gait, cognitive resources, in particular prefrontal regions, are called into play in attempt to compensate for these motor deficits. These findings suggest that improving ambulation in patients may increase the efficiency of brain activation by reducing prefrontal activation. Futures studies should examine activation in other brain regions and in response to specific interventions that target motor abilities.

S.6iv

Rehabilitation treatment for turning: Role of wearable technology

Martina Mancini¹, Samuel Stuart¹, Fay Horak¹, Laurie King¹

¹Oregon Health & Science University

Nearly every task performed during the day requires some amount of turning [1]. Difficulty in turning during gait is a major contributor to mobility limitations, falls and reduced quality of life in older people and people with movement disorders (e.g. Parkinson's disease). Moreover, falls during turning are particularly dangerous because they usually result in contact of the femur with the ground, which results in eight times more hip fractures compared with falls during straight walking [2,3]. Turning gradually becomes more difficult as we age due to increasing sensorimotor impairments. The ability to modify our locomotor trajectory by turning safely is important for functional independence but, surprisingly, turning is much more difficult for the nervous system to control than straight-ahead walking. It has been suggested that neural systems related with turning may be more vulnerable to impairments than those related with straight-ahead gait since turning involves more inter-limb coordination, more coupling between posture and gait, and modifications of locomotor patterns

requiring frontal lobe cognitive and executive function that plays a role in postural transitions. Based on those impairments, a rehabilitation program for turning should include components of: coordination (inter-limb, temporal, spatial), consistency (reducing variability), challenge (speed, direction, sensory input, cognitive challenges). This guided discussion will review rehabilitation programs that target different aspects, such as muscle flexibility, weight shifting, coordination, and open-loop external cueing to improve turning outcomes. In parallel, we will also review the potential of wearable technology to improve rehabilitation programs outcomes by 1) providing objective measures at the impairment level, 2) providing a greater sensitivity to detect subtle changes in turning and 3) providing data on turning during regular daily function (home monitoring). Lastly, wearable technology could also be of help in providing patients with feedback about their performance during the rehabilitation session (closed-loop cueing). References [1] Glaister BC, Bernatz GC, Klute GK, Orendurff MS. Gait Posture, 2007. [2]. Cummings SR, Nevitt MC. Osteoporosis international, 1994. [3]. Feldman F, Robinovitch SN. Journal of biomechanics, 2007.

S.7: From basic science to clinical practice: Anxiety, attentional focus and the control of posture and gait

Chair: **William Young** *Brunel University London, GBR* Location: Pentland suite (level 3)

S.7i

The role of movement specific reinvestment in attention focus and gait behaviour by older adults Liis Uiga¹

¹University of Waikato

BACKGROUND AND AIM: The Theory of Reinvestment (Masters, 1992; Masters & Maxwell, 2008) argues that using conscious step-by-step movement processes to control the movement mechanics online can disrupt performance of relatively automated motor skills. Conscious movement processing (i.e., movement specific reinvestment) is a function of personality, specific context of the task and a variety of psychological, physiological and environmental contingent triggers. As such, the propensity for movement specific reinvestment varies from one person to another and from one context to the next. The aim of this presentation is to provide the theoretical underpinnings of movement specific reinvestment and its association with gait behaviour in older adults. **METHODS**: Empirical research conducted in our laboratory examining gait behaviour by older adults will be introduced. **RESULTS**: We have shown that older adults with a high propensity for movement specific reinvestment are more aware of their limb movements and less aware of the external environment when walking on ground level and/or navigating obstacles, whereas, older adults with a low propensity for movement specific reinvestment are less aware of their limb movements and more aware of the external environment. High inclination for movement specific reinvestment has been further associated with less accurate stepping, despite increased preparation and planning times. **CONCLUSIONS**: As conscious processes are slow and attention demanding, it is possible that older adults with a high inclination for movement specific reinvestment need more time to 'plan' their movements; however, this inefficient information processing leads to worse stepping accuracy that might lead to future falls. The findings of these studies have implications for practitioners (e.g., rehabilitation) and signal that caution should be taken when providing detailed verbal instructions that cause conscious movement processing.

S.7ii

Postural threat and standing balance control: Do changes in attention play a role?

Martin Zaback¹

¹University of British Columbia

Postural threat, manipulated through changes in surface elevation, has been used to examine how fear of falling influences balance control. When standing at the edge of an elevated surface, individuals typically lean away from the platform edge and demonstrate higher frequency and smaller amplitude postural adjustments [1]. While these threat-related changes in standing behaviour have been consistently replicated, the underlying mechanisms are not well understood. One theory

is that emotionally-evoked neurophysiological changes are responsible. Support for this theory comes from research that has demonstrated facilitation of balance relevant vestibular and proprioceptive reflexes when standing under conditions of height-related postural threat [2-4], as well as increased cortical processing of balance relevant sensory inputs [5]. Such changes in sensorimotor set could contribute to the tighter regulation of standing balance typically observed when threatened. Alternatively, threat-related changes in standing balance may be influenced by changes in cognitive strategy. Recent work has demonstrated that there are broad changes in attention when standing under conditions of postural threat; individuals tend to dwell on threat-related stimuli, employ various self-regulatory strategies, and engage in greater conscious movement processing [6-8]. The latter is of particular interest, as redirecting attention toward one's movements may interfere with otherwise automatic postural control processes, potentially influencing standing behaviour [9]. This presentation will discuss recent work from our lab that has examined associations between threat-related changes in conscious movement processing and standing balance control, along with existing work that has examined how the manipulation of attention influences standing balance under non-threatening as well as threatening conditions. Discussion will also focus on how known neurophysiological and attentional changes associated with threat may interact to influence standing behaviour. The overall aim of this presentation will be to provide insight into whether changes in attention represent an important mechanism underlying the relationship between postural threat and standing balance control. [1] Adkin and Carpenter (2018), Front. Neurol. 9:789; [2] Horslen et al. (2013), J. Neurophysiol. 110:899-906; [3] Horslen et al. (2014), J Physiol.592:3671-3685; [4] Naranjo et al. (2016), J. Neurophysiol. 115:833-842; [5] Adkin et al. (2008), Neurosci. Lett. 435:120-125; [6] Huffman et al. (2009), Gait Posture 30:528-532; [7] Zaback et al. (2016), Gait Posture 45:19-24; [8] Johnson et al. (in press), Psych. Res.; [9] Young and Williams, (2015), Gait Posture 41:7-12

S.7iii

Anxiety, attentional focus and the visuomotor control of adaptive locomotion

Toby Ellmers¹

¹Brunel University

A growing body of research has sought to understand how emotion and attention influence the control of posture and gait. This presentation will describe how fall-related anxiety, and associated changes in attention (e.g., an internal focus/ conscious movement processing), influence how young and older adults control locomotion. Specific focus will be directed towards discussing how anxiety can disrupt the visuomotor processes necessary for adaptive gait, such as the proactive feedforward planning required to effectively avoid an obstacle. Previous research highlights marked differences, based on fall-risk, in the visuomotor control of adaptive locomotion. For example, older adults deemed to be at a high risk of falling often display both reduced feedforward planning and impaired on-line visual control of stepping movements (e.g., Chapman & Hollands, 2006; Young et al., 2012) - behaviours associated with increased stepping errors and, therefore, reduced safety. Young and Williams (2015) identified heightened fall-related anxiety as one potential mechanism underlying these 'high-risk' visual-search behaviours. Specifically, these authors proposed that anxiety-induced internal focus (and subsequent attempts to consciously control movement) mediates the relationship between fear of falling and altered patterns of visual search. This presentation describes a series of experiments conducted in our laboratory, which have directly manipulated fall-related anxiety and attentional focus in order to evaluate the impact of fall-related anxiety (and associated changes in attention) on visual-search during locomotion. The results from this research highlight a causal relationship between increased anxiety and disrupted visuomotor control of locomotion, and identify conscious movement processing/control as one possible underlying factor. This presentation will conclude by attempting to conceptualise these findings within previously presented psychological frameworks, such as Attentional Control Theory (Eysenck et al., 2007) and Reinvestment Theory (Masters & Maxwell, 2008).

S.7iv

Attentional control strategies for retraining gait and balance control in rehabilitation: One size fits all? Elmar Kal¹

¹VU University

BACKGROUND AND AIM: Considerable evidence from basic science suggests that conscious movement processing can disrupt motor performance in healthy adults and elderly. This finding could have important ramifications for clinical practice, as it implies that therapists should try to discourage their patients from using conscious control while moving. This may be especially appropriate for patients with stroke or Parkinson's, and elderly fallers. These clinical groups often report a particularly strong tendency to rely on conscious movement processing in daily life. **METHODS**: Focusing specifically on stroke rehabilitation, this presentation will try to answer whether (and how) the negative effects of conscious movement processing on motor performance translate to the clinical setting. For a comprehensive assessment, the presentation will first describe the results of observations regarding how physical therapists currently use internal focus strategies (which promote conscious control) when treating patients with stroke. Second, experimental studies will be discussed that have investigated the immediate and long-term effects of learning using internal focus strategies across a range of motor tasks (e.g., stepping, balancing, reaching). **RESULTS**: Combined, results of these studies challenge the notion that conscious motor processing is fundamentally maladaptive per se. Rather, converging evidence shows that an individual's motor skill, proprioception, and attentional capacity can partially determine whether an internal, conscious strategy will benefit or disrupt motor performance. For example, a recent randomised trial suggests that conscious processing may only disrupt balance when patients have relatively intact proprioceptive and motor control, and might actually be beneficial in individuals with impairments in these areas. **CONCLUSIONS**: To conclude, anxiety-induced changes in attentional control may sometimes be adaptive in people with movement difficulties. It may be appropriate for therapists to screen their patients' motor, proprioceptive and cognitive skills to be better able to adapt their use of instructions to the individual patient.

S.8: Data analytics in the wild: Translating emerging wearable inertial and camera methods to fall prevention intervention strategies

Chairs: James Tung University of Waterloo, CAN Alan Godfrey Northumbria University, GBR Location: Fintry suite (level 3)

S.8i

Digital gait biomarkers beyond the laboratory: Advantages and challenges Silvia Del Din¹

¹Newcastle University

Digital gait biomarkers are emerging as a powerful tool to detect early disease and monitor progression across a number of conditions. Typically, quantitative gait assessment has been limited to specialised laboratory facilities. However, measuring gait in home and free-living/community settings may provide a more accurate reflection of gait performance as it allows walking activity to be captured over time in habitual contexts. Modern accelerometer-based wearable technology allows objective measurement of digital gait biomarkers, comprising metrics of free-living walking activity/behaviour as well as discrete gait characteristics. This presentation will address the feasibility, advantages and challenges of measuring digital gait outcomes during free-living activity for discriminating pathology and detecting early risk. The use of traditional digital gait outcomes and novel metrics as a measurement tool for characterising patient populations, discriminating disease (e.g. Parkinson's disease) and detecting risk (e.g. prodromal stage of disease) will also be discussed. Data driven approaches for disease classification and progression will also be presented. Quantification of digital gait outcomes in free-living/ unsupervised environments presents considerable challenges due to: sensor limitations; lack of standardised protocols, definitions and outcomes; engineering challenges; and contextual recognition. However our preliminary results are encouraging regarding the use of digital gait biomarkers for application in large multi-centre clinical trials, for supporting diagnosis and guiding clinical decision making.

┥ ToC

S.8ii

Fall risk assessment with wearables in the wild: Towards recommended free-living outcomes

Mina Nouredanesh¹, Alan Godfrey², James Tung¹

¹University of Waterloo, ²Northumbria University

Current wearables, largely inertial measurement unit-based devices (IMUs, e.g. accelerometer, gyroscope) have been used to quantify a range of physical functioning/capability related tasks. Most notable are gait related activities such as intermittent and continuous (predefined timed, e.g. 2 minutes) walking during clinical/laboratory observational-based testing. Other examples include transitions, turns and composite measures of physical capability such as timed-up-and-go (TUG). Utilising IMUs to objectively quantify outcomes during those tasks adopts an instrumented approach which have shown promise for fall risk assessment (FRA) during laboratory-based protocols. Yet, true IMU value resides beyond the laboratory while monitoring more natural, habitual activities. Discrete, high resolution IMUs can gather data continuously in any environment. Current state of the art has primarily focused on gait assessment during 3 to 7 day studies but notable challenges remain which are also evident during gathering free-living turning, transition and composite related data. Despite the growing body of literature focusing on the development of novel IMU-based free-living FRA methods, there is little consensus on use of language (e.g. guantity vs macro) and outcomes (e.g. spatiotemporal gait, sedentary duration, guantity of missteps). Moreover, this is complicated by the (i) inconsistent inclusion and description of gait outcomes within discrete domains associated with fall prediction (e.g. postural control, pace); (ii) methodological and algorithm descriptions of how gait and other activities are defined from free-living IMU bout segmentation; and (iii) dearth of contextual analysis surrounding IMU captured free-living gait and fall related events. From a detailed narrative literature review, we highlight inconsistencies within the literature while providing recommendations towards the harmonisation and standardization of outcomes for free-living FRA by: (a) proposing a new conceptual framework to map free-living IMU-based outcomes; and (b) identifying outcomes with strong predictive power for falls. Furthermore, current limitations associated with collecting and analyzing free-living IMU-based data only are discussed. Consequently, we introduce the potential of body-worn egocentric cameras to complement IMU data with contextual information (to detect fall-related environmental hazards, circumstance and location) while proposing new approaches to complement existing gait models with outcomes from video data.

S.8iii

Video capture of falls in long-term care from cameras mounted to ceilings and walls: Lessons from an 11 year cohort study

Stephen Robinovitch¹, Natalie Shishov¹, Vicki Komisar¹

¹Simon Fraser University

For the past 11 years, we have partnered with two long-term care facilities in the Vancouver area in a cohort study of falls. The study involves the collection of video footage of real-life falls collected from networks of cameras mounted to ceilings and walls in common areas (dining rooms, hallways and lounges). To date, we have analyzed over 2400 falls experienced by over 650 residents, using structured questionnaires to explore the characteristics of fall initiation, descent, impact and recovery. These validated tools allow us to quantify the activities that older adults were attempting at the time of the fall, the characteristics of the environment, the nature of balance recovery attempts, the direction of the fall, and the body parts experiencing impact during the fall. The size of the database allows us to narrow our focus to examining falls in specific patient subgroups, situational or environmental contexts, or injury outcomes including hip fracture (see Figure). We are now sharing a database of 105 falls for reuse by researchers through the NYU-based Databrary network. Environmental cameras have specific strengths and weaknesses for video capture of falls. Once installed, they do not rely on the user to adopt or wear the technology. They can provide extensive coverage (at a cost) and high resolution images. The external view of the fall facilitates analysis of the time-varying kinematics of the body during falls with video digitization or

modelling software. However, each camera only captures movements in it's field-of-view, and occlusions are common. In contrast, body-mounted cameras can provide continuous footage regardless of location. For any type of video system, the range of feasible outcomes is limited to what can be reliably observed from the video. For example, our questionnaire quantifies the biomechanical nature of imbalance (slip, trip, loss of support, etc), but we cannot determine from the video the physiological factors underlying imbalance. Challenges arise in extracting the intent or thoughts of the individual from video. Body-centric cameras may provide complementary information on head orientation or gaze. Another challenge is automatic detection of events of interest, such as falls (a process that is facilitated in long-term care through incident reports, and the ability to capture weeks or even months of video footage on large hard drives). The development of computer vision techniques to automatically extract a range of useful outcomes from video footage is a worthwhile but challenging goal. Preliminary attempts to detect falls from video footage with machine learning algorithms show about 70% accuracy in detecting falls, but may be higher for body-centric cameras.

S.8iv

Daily-life gait analysis to evaluate fall risk and mobility decline

Kim van Schooten¹

¹Neuroscience Research Australia/University of New South Wales

Wearables are becoming ubiquitous for activity tracking and can provide insight into quality of movement. These devices can be used to unobtrusively assess the amount and guality of gait someone engages in during daily life, which has been linked to fall risk. This presentation will provide an overview of the opportunities, challenges and limitations of using wearable sensors in large-scale studies to assess fall risk and mobility decline. It will also discuss how video-based approaches may advance the field. The first part of the presentation will focus on sensitivity of daily-life gait to change, which is essential for use beyond screening. We collected repeated assessments in 169 older people, 2 weeks apart, to assess stability of daily-life gait quality characteristics. Our results show that gait characteristics were comparable (all p \geq 0.11) and strongly correlated between the two assessments (r = 0.77 to 0.97). Recent work on sensitivity to change over a year as a result of time or a balance exercise intervention will also be discussed. Whilst initial results are promising, the field is still in its infancy. Future work should address standardisation of daily-life gait analysis and rigorous testing of methodology. Video observation might assist in validating some of the underlying assumptions of daily-life gait analysis, as well as provide insight into contextual influences, which cannot readily be assessed with accelerometers. Hence, the second part of the presentation will focus on how wearable and video-based approaches may complement and enrich each other to discuss the future of these techniques to improve efficient use in clinical-based studies.

S.9: Spinal cord stimulation for gait dysfunction and postural instability in Parkinson's disease

Chair: Mandar Jog Western University, CAN Location: Sidlaw suite (level 3)

Moderator: Olivia Samotus Western University, CAN

S.9i

Effects of spinal cord stimulation on mobility and cortical activity in Parkinson's disease patients with severe gait dysfunction and ON-freezing

Olivia Samotus¹, Andrew Parrent², Mandar Jog² ¹Western University, ²London Health Sciences Centre

BACKGROUND AND AIM: Axial motor symptoms such as gait dysfunction and freezing of gait (FOG) are highly disabling and result in injuries, and loss of independence and quality of life in Parkinson's disease (PD) patients. The response of axial symptoms to dopaminergic therapy and deep brain stimulation is limited and unpredictable. Individualized programming of epidural spinal cord stimulation (SCS) has been shown to reduce the number of FOG episodes and improve spatiotemporal gait features over 6-months. We investigated how motor cortical excitability is modulated by SCS therapy

for PD gait dysfunction over a 12-month period. **METHODS**: Mid-thoracic SCS was implanted in 10 PD patients with levodopa-resistant FOG and gait dysfunction. Primary motor intracortical facilitation and inhibition activities were assessed using paired-pulse transcranial magnetic stimulation (pp-TMS) protocols targeting the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. SCS programming was individualized to each participant's spatiotemporal gait metrics within the first month post-SCS implantation. Ambulatory and turning gait tasks and pp-TMS measures were collected pre-SCS implantation and at 3-, 6-, and 12-months of SCS use while participants were OFF and ON dopaminergic medication. **RESULTS**: SCS significantly reduced the number of FOG episodes and improved dynamic postural balance, stride velocity, step length, single support and swing times acutely (1-hour in the lab with SCS ON) and with chronic SCS use (participants on medication with the SCS turned OFF and ON) compared to pre-SCS. At baseline, impaired intracortical facilitation (ICF) levels in the lower limb cortical areas were correlated to stride length and velocity gait parameters while participants were off medication. With SCS, short afferent inhibition levels in the upper limb were improved and correlated to improvements in spatiotemporal gait dynamics. **CONCLUSIONS**: Observed gait improvements by SCS in PD participants may be governed by enhancing motor cortical activity.

S.9ii

Subthalamic neural signatures of gait impairment and FOG in Parkinson's disease and the response to 60 Hz and 140 Hz deep brain stimulation

Helen Bronte-Stewart¹, Chioma Anidi¹, Johanna O'Day¹, Ross Anderson¹, Muhammad Furqan Afzal¹, Judy Syrkin-Nikolau¹, Anca Velisar¹

¹Stanford University Medical Center

BACKGROUND AND AIM: Freezing of Gait (FOG) is a devastating axial motor symptom in Parkinson's disease (PD) leading to falls, injury and loss of independent living. The response of FOG to dopaminergic medication and deep brain stimulation (DBS) is complex, variable and yet to be optimized. Fundamental gaps in the knowledge of the underlying neurobiomechanical mechanisms of FOG render this symptom one of the unsolved problems in the treatment of PD. Subcortical neural features of gait impairment and FOG in PD are largely unknown due to the challenge of accessing deep brain circuitry in freely moving human subjects, and due to the difficulty of eliciting FOG. Since FOG is episodic we hypothesized that dynamic features of subthalamic (STN) beta oscillations (beta bursts) may contribute to the freezer phenotype during gait tasks that elicited FOG. We also investigated whether STN DBS at 60 Hz or 140 Hz affected beta burst dynamics and gait impairment differently in Freezers and Non-Freezers. **METHODS**: Synchronized STN local field potentials from an investigative implanted sensing neurostimulator (Activa® PC+S, Medtronic Inc, FDA IDE, Stanford IRB approved), and gait kinematics/kinetics were recorded in 12 PD subjects, off medication, during forward walking and stepping in place (SIP on dual force plates) tasks under the following randomly presented conditions: NO, 60 Hz, and 140 HZ STN DBS. RESULTS: Prolonged movement band beta burst durations differentiated Freezers from Non-Freezers during gait without FOG, and were longer during periods of FOG in Freezers. In Freezers, both 60 Hz and 140 Hz DBS improved gait arrhythmicity and shortened burst durations during gait without FOG, reduced the percent time of FOG and shortened burst durations during FOG. In contrast STN DBS at either frequency left unchanged the normal gait parameters and short burst durations in Non-Freezers. **CONCLUSIONS**: This study demonstrates that prolonged periods of excessive beta oscillations and synchrony (longer beta burs durations) are important neural markers for freezing behavior and FOG in PD and that STN DBS modulates longer not shorter beta burst durations while improving gait arrhythmicity and FOG, thereby acting to restore physiological signaling in sensorimotor networks.

S.9iii

Behavioral and electrophysiological effects of spinal cord stimulation Parkinson's disease animal models

Rómulo Fuentes¹, Aquiles Martínez¹, María Florencia Alamos² ¹Universidad de CHL, ²Pontificia Universidad Católica de CHL

BACKGROUND AND AIM: Dopamine replacement therapy is effective for treating appendicular symptoms of Parkinson's disease (PD), but is less effective for axial symptoms like posture and gait impairments. For the first time, we applied the novel use of thoracic spinal cord stimulation (SCS) to restore locomotion and improve freezing, bradykinesia and rigidity symptoms in rodent and primate parkinsonian animal models. The objective is to discuss the possible mechanisms of action of SCS for treating gait in parkinsonian disorders. **METHODS**: In several studies involving different PD animal models, acute pharmacologically induced dopamine-depleted mice, chronic 6- hydroxydopamine (6-OHDA) lesioned rats, rats with alpha-synuclein over expression, and marmosets with 6-OHDA lesion we measured behavioural and electrophysiological responses to SCS. In vivo electrophysiological recordings within the brain motor circuit using local field potential and single neuron were measured before and after SCS was applied. **RESULTS**: The functional recovery was paralleled by the disruption of the pathological low-frequency synchronous oscillatory activity, leading to an electrophysiological state normally preceding spontaneous initiation of locomotion. Neuronal activity patterns of dorsolateral striatum and primary motor cortex (MI) were also significantly altered. **CONCLUSIONS**: These studies suggest that SCS effect is not just due to a local effect on the spinal cord. It seems that SCS can interfere with brain dynamics, leading to states that allow movement. SCS should be considered as an additional treatment option for PD-patients.

S.10: Virtual reality as a tool to alter multisensory perception and human motor learning

Chair: **Daniel Ferris** University of Florida, USA Location: Fintry suite (level 3) Moderator: **Karen Li** Concordia University, CAN

S.10i

Limitations and opportunities for virtual reality sensorimotor training Daniel Ferris¹

¹University of Florida

BACKGROUND AND AIM: Previous research using virtual reality for motor skills training has failed to demonstrate it can accelerate or improve training outcomes relative to training in the real world. Sensorimotor training seems to inhibit motor learning compared to practicing the real world task. Potential reasons for the inhibited motor learning are the slow refresh rate of visual displays, disconnect between visual display and vestibular feedback, reduction in peripheral vision, and/or added cognitive load. As a result, many attempts at improving sensorimotor training with virtual reality have not fared well in comparison to real world training. Although there appear to be drawbacks to virtual reality training, there are advantages to using virtual reality that allow for perturbations or manipulations to training that cannot be done in the real world. For example, virtual reality can induce added stress safely in a human by modifying the training environment. Walking on a balance beam four stories off the ground is safer and easier to accomplish in virtual reality than in the real world. Another example of training modifications that can be more easily accomplished with virtual reality compared to the real world are visual perturbation. Introducing transient changes to the visual field with virtual reality can cause individuals to downgrade their dependence on visual feedback and increase their dependence on proprioceptive feedback. These types of virtual reality modifications enable researchers to enhance motor learning outcomes during sensorimotor training. **METHODS**: My laboratory has studied how electrocortical brain activity (i.e. high-density electroencephalography) and whole body biomechanics change in regard to virtual reality modifications during sensorimotor training. We often use an experimental paradigm of subjects walking on a treadmill-mounted balance beam as it is a functional locomotor task that requires active lateral balancing. With virtual reality, we have been able to modify the sensory feedback to individuals as they practice the sensorimotor locomotor task. **RESULTS**: Virtual reality modifications can modify physiological parameters during training

┥ ToC

along with motor learning outcomes after practice. The electrocortical data indicates that the choice in virtual reality modifications can have distinct effects on brain network activity, providing insight into the neurophysiological mechanisms for modified motor learning outcomes. **CONCLUSIONS**: Combining biomechanical and electrocortical measurements during experimental modifications of sensorimotor training with virtual reality can greatly enhance the design of new training approaches. In addition to providing new insight into how the brain controls human movement, the techniques can also inform computer scientists and engineers how they might improve virtual reality systems for enhanced sensorimotor training outcomes.

S.10ii

Using simulation technologies to study multisensory self-motion perception and mobility: Effects of age-related changes to sensory and cognitive functions

Jennifer Campos¹, M. Kathleen Pichora-Fuller², Karen Li³, Natalie Phillips³, Laurence Harris⁴

¹Toronto Rehabilitation Institute - University Health Network, ²University of Toronto, ³Concordia University, ⁴York University

BACKGROUND As we move though our environment, our brain integrates visual, auditory, proprioceptive and vestibular inputs. Optimally integrating these inputs allows us to perceive self-movement parameters (e.g. heading direction) with greater certainty. However, much remains to be understood regarding how sensory inputs are integrated in the brain to support mobility and how age-related changes to sensory and cognitive functions affect these processes. Virtual Reality (VR) and simulation technologies are unique tools for multisensory research given the ability to strategically manipulate individually sensory inputs. Further, these technologies can be used to mimic everyday conditions, which is informative when applying fundamental knowledge in multisensory and sensory-cognitive integrative processes to real world mobility-related challenges. First, I will describe Toronto Rehab's Challenging Environment Assessment Laboratory (CEAL) which houses a motion platform, advanced driving simulator and immersive projection-based VR system with treadmill. Second, I will describe studies evaluating sensory-motor-cognitive interactions during tasks of standing balance, walking, and passive motion. METHODS AND RESULTS: 1. We evaluated age-related changes to visual-vestibular integration using the motion platform and a head-mounted display to perform psychophysical heading estimation tasks. Results indicate that older and younger adults both demonstrate increased estimate precision from congruent bimodal inputs (visual+vestibular) compared to unimodal inputs (visual or vestibular alone); however, during sensory conflicts (conflicting visual and vestibular heading angles), older adults do not demonstrate reliability-based sensory weighting as would be predicted by optimal integration. 2. We used the projection-based VR simulator to evaluate standing balance and walking performance during multisensory, multitasking conditions. Specifically, participants either walked or stood within a simulated city scene while either performing an auditory divided attention task or no secondary task. Dual-task costs were evaluated and suggest that mobility-related functions were prioritized; particularly in older individuals with and without hearing loss and older adults at risk of cognitive decline. CONCLUSIONS Understanding how sensory inputs are integrated to support mobility helps extend traditional approaches of studying sensory systems independently. Reproducing realistic and challenging conditions can provide novel insights into sensory and cognitive interactions. These processes may change with age-related sensory and cognitive declines. Simulators can provide novel methods of systematically studying the fundamentals of multisensory integration and can provide an important middle ground between traditional labs/clinics (controlled/safe) and the real world (uncontrolled/dangerous). Funding: NSERC, CIHR, Alzheimer's Association

S.10iii

Development of low-cost virtual reality applications to assess sensorimotor function and improve real-world mobility

James Finley¹, Aram Kim¹, Beth Fisher¹, Marientina Gotsis¹, Vangelis Lympouridis¹ ¹University of Southern California

BACKGROUND AND AIM: Recent advances in consumer-level virtual reality (VR) have opened the door for the development of low-cost, fully-immersive systems for interactive mobility training. The promise of VR for improving mobility lies in its ability to mimic real-world challenges such as obstacles and crowds while providing systematic control over the environment and augmented performance feedback. However, creating effective training applications requires an understanding of how sensory feedback provided in VR is integrated with ongoing locomotor commands and how the practice of locomotor skills in VR transfers to the real world. Here, I will share recent work from our lab exploring sensorimotor integration and locomotor skill learning in virtual reality, and conclude with a description of how we use this information to develop interactive mobility training experiences. **METHODS**: We first investigated how visual feedback about the lower extremities influenced the coordination between head orientation and foot placement during a treadmillbased virtual obstacle negotiation task. During the task, participants received one of three types of visual feedback about the lower extremities: no feedback, end-point feedback, and a link-segment model. In a second study, we examined how people acquired a novel obstacle negotiation skill in VR and evaluated how this skill transferred to the real-world. Transfer of learning was assessed by measuring how VR-based training influenced participants' foot clearance during over-ground negotiation of a physical obstacle. We also assessed retention of the learned skill on the treadmill and over-ground 24 hours after the initial session. **RESULTS**: The presence of a visual representation of the lower extremities led to greater downward head pitch during the approach to and subsequent crossing of an obstacle. Moreover, this strategy was associated with increased safety margins during trailing limb crossing. In our study of skill learning, we found that participants systematically learned to reduce foot clearance during the VR trials, and this reduction in foot clearance transferred to overground walking. Moreover, this skill was retained in VR and over-ground on Day 2. Lastly, we found that retention in each environment was associated with the final level of performance in the same environment on Day 1. CONCLUSIONS: These results demonstrate that the quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation. Moreover, we showed that locomotor skills can be learned in VR and the retention of these skills is associated with performance during skill acquisition in a context-dependent manner. Ultimately, gaining a deeper understanding of sensorimotor control and learning in the context of VR is critical for informing the development of effective VR-based clinical interventions to improve mobility.

S.11: Balance training using perturbations to prevent falls: Is it feasible and effective?

Chair: **Stephen Lord** *Neuroscience Research Australia, AUS* Location: Pentland suite (level 3)

S.11i

Perturbation training for fall-prevention: Inception, evolution, translation Tanvi Bhatt¹

¹University of Illinois at Chicago

Despite the commonality of falls within the community-dwelling aging and disabled population, little is known about their mechanism or their contributing factors, with limited tools assessing this crucial aspect. Further, there are limited evidence-based treatment approaches for fall reduction in these populations. Perturbation training is an emerging, task-specific intervention that exposes individuals to self- or externally-generated perturbations, entraining proactive and reactive control mechanisms for fall prevention. We examined the adaptation and training effects to repeated laboratory-induced perturbations and the ability to generalize their effects to different contexts. Healthy subjects were exposed to repeated moveable platform slip perturbations induced under their right limb and were subsequently exposed to slips under the non-trained limb, non-trained surface (oil contaminated vinyl floor) and non-trained tasks perturbation (trips). We observed that the perturbation-training induced adaptations could be significantly generalized across limbs, functional tasks, and training devices, resulting in reduced fall outcomes on exposure to these novel, non-training environments. Preliminary results indicate that older adults are able to demonstrate similar adaptations and generalizations. Findings from systematic large scale clinical trials indicate in older adults indicate that single-session, training-induced adaptations can be retained in a laboratory setting for up to 12 months with maximum retention at 3 months with a gradual motor memory decay from 6 to 9 to 12 months.

conducted an RCT to examine adaptation effects induced from treadmill-slip-perturbation training in older adults and their generalization to overground slips. Results indicated that treadmill-slip-perturbation training though effective in inducing reactive adaptations in stability control and reducing fall-risk to novel overground slips was less effective than the task-specific overground slip training. Conversely overground trip-perturbation training though resulted in significant adaptations within a single-session in terms of stability control and obstacle hit, shorter-term retention was not as robust as slip-induced. Further, considerations of optimal dosage for perturbation training will be discussed. Lastly we examined if the adaptive effects observed within a healthy nervous system would be impacted by a neurological insult such as a stroke. Results indicated that upon exposure to overground slips people with hemi-paretic chronic stroke could acquire adaptations in stability control similar to healthy older adults both under affected and non-affected limbs (albeit at different rates) for preventing fall-risk. Given these positive results, perturbation-based assessment and training could be used as an adjunct to current rehabilitation paradigms to target fall-prevention.

S.11ii

Adaptation and retention of reactive gait stability to trip perturbations in older adults

Kiros Karamanidis¹, Epro Gaspar¹, Chris McCrum², Matthias König¹

¹London South Bank University, ²Maastricht University Medical Centre+

Gait stability declines and falls incidence increases with age. Most falls among older people occur during gait, often due to tripping or slipping. Thus, the ability to respond appropriately to unexpected external disturbances in the mechanical environment during gait, and to improve and retain such fall-resisting skills are important for preventing falls. Task-specific assessment of gait stability and adaptability, in addition to potential training-induced improvements in the recovery stepping behaviour of older adults, comprise an interesting experimental approach to assess and influence mechanisms that may affect the safety of human gait. In a series of laboratory-based studies, we investigated how gait stability and adaptability during walking with trip-like perturbations are affected by age and muscle-tendon unit mechanical properties, in order to better understand the underlying mechanisms of the decline in locomotor function across the adult lifespan. We demonstrated that the ability to control dynamic stability in response to a novel trip-like perturbation during walking has already begun to deteriorate by middle age, however, even in old age the ability to adapt gait and improve stability following repeated perturbations is preserved. In subsequent studies we showed that leg-extensor muscle strength and tendon stiffness limit gait stability during unexpected, untrained perturbations, but that the potential for adaptive improvement after repeated perturbations during walking seems not to be related to the age-related degeneration in muscle-tendon unit capacities. Concerning the long-term retention of acquired gait stability improvements, we found that the neuro-motor system of older adults is capable of retaining the improved fall-resisting skills over a prolonged time period (years) with minimal decay over time. In summary, our findings support the hypothesis that the aged neuro-motor system can facilitate reactive balance responses by upgrading its neuromuscular coordination and retaining those balance improvements over several years and may thereby reduce the risk of falling. Whether training effects are also translated to other balance tasks will be discussed.

S.11iii

Pursuit of ecological validity in perturbations used for reactive balance training: Studies using the trip and slip walkway in young and older adults

Yoshiro Okubo¹, Matthew Brodie¹, Daina Sturnieks¹, Stephen Lord¹

¹Neuroscience Research Australia

The greater fall reduction effect shown by balance training using perturbations, compared to general exercises, are likely related to the greater task-specificity of the trained movements (Okubo et al., 2017). Ecologically valid perturbations (i.e. similar to real life hazards) may be crucial for training balance to prevent falls. The most common causes of falls among

community-dwelling older adults are trips and slips (Berg et al., 1997). Therefore, we developed a walkway that provides unpredictable trips and slips while walking at usual gait speed. We will present results from two pilot experiments and a randomised controlled trial (RCT) using this trip and slip walkway. Our first pilot study with 10 young participants indicated (i) rapid adaptations (in a few trials) are related to prediction of the perturbation type and location, (ii) gait adaptations based on prediction do not transfer to trips and slips that occur in new, unexpected locations, and (iii) improvement of reactive responses occurs more slowly. The second pilot study with 10 young and 10 older participants indicated that increasingly unpredictable perturbations (i.e. less prediction and more reactive response) resulted in increased anxiety and a 30% dropout in older adults. This indicates training reactive balance in a single session is not optimal and older adults require more staged progression in learning appropriate responses to unpredictable trips and slips. This informed a RCT which involved 44 older adults taking part in three sessions of trips, slips and mixed training (intervention) and sham step training (control). At post-assessment, relative to the control group, the intervention group experienced -60% fewer total falls (rate ratio [RR]=0.40, 95% confidence interval [CI]=0.22-0.76), -67% fewer slip falls (RR=0.33, 95% CI=0.12-0.90) and -51% fewer trip falls (RR=0.49, 95% CI=0.21-1.12) in the laboratory (Figure 1). These findings indicate older adults can improve reactive responses to trips and slips with high unpredictability. Further research is required to examine its effects in reducing real-life falls and improve clinical feasibility of the training paradigm while maintaining its efficacy and ecological validity.

S.11iv

Can balance training with perturbations actually be implemented in rehabilitation practice?

Avril Mansfield¹, Elizabeth Inness¹

¹University Health Network

Reactive balance training (RBT) with perturbations is a relatively new treatment approach, and lack of awareness and knowledge of new interventions is often the primary barrier to clinical implementation of new practices. Furthermore, specific characteristics of RBT pose challenges for implementation into clinical practice. Most notably, previous studies of RBT usually use custom equipment (e.g., walkways, moving platforms) or programmable treadmills to deliver the perturbations. Lack of time, lack of equipment, poor equipment reliability, and knowledge and skills required to use the equipment are some common barriers to using new treatments in rehabilitation practice when new devices are involved. Therefore, relying on equipment to provide the perturbations may pose a significant challenge to implementing RBT into clinical practice. Additionally, reactive balance control is not assessed routinely in clinical practice, which presents a challenge for identifying client-specific reactive balance dyscontrol that can be targeted with training. We have developed task-oriented RBT methods that do not require specialized equipment, and have implemented these methods into neurorehabilitation practice at our institution for individuals with stroke, acquired brain injury, and spinal cord injury. This presentation will discuss our experiences implementing RBT, results of studies we have conducted evaluating the effect of RBT on reactive balance control and falls in daily life, and results of a survey of healthcare professionals' use of RBT in clinical practice. Using an integrated knowledge translation approach, working collaboratively with clinical partners, we iteratively developed an approach to outline principles of training (e.g., motor learning and 'FITT' principles), inclusion/exclusion criteria and safety considerations, and potential training strategies based on underlying dyscontrol. Our work demonstrates that low-tech RBT is feasible in neurorehabilitation practice, can improve reactive balance control, and has the potential to prevent falls in daily life. With an aim to translate this practice to other settings, we undertook a Canadian-wide survey to understand current practices. Results of our survey suggest that RBT is used frequently in clinical practice (used by >75% of respondents). Lack of knowledge of RBT is the most significant barrier for those who do not use this method in their practices. Healthcare professionals who were familiar with RBT and open to using it in practice reported barriers related to training, knowledge, human resources, client characteristics, and the practice setting. While low-tech RBT methods are feasible and effective, a question remains as to which perturbations methods are most effective. Our ongoing and future work aims to further develop and evaluate knowledge translation tools to support clinical uptake of RBT in other rehabilitation settings.

S.12: The challenge of preventing stair falls: Understanding the individual contributions of, and interplay between, environmental and intrinsic factors

Chair: **Bradford J. McFadyen** Université Laval, CAN Location: Sidlaw suite (level 3)

S.12i

The challenges and opportunities of simulating stair falls in a laboratory environment to inform stair and handrail design

Alison Novak¹

¹Toronto Rehabilitation Institute-UHN

Falls can be prevented on a population-level through environmental changes. This is because these extrinsic risk factors are amenable to correction and do not require modifications in individual behaviour or physical function. In the case of stairs, environmental changes can effectively occur through modifications to building codes and standards. However, to affect policy change considerable empirical evidence is needed. When evaluating changes in stair and handrail design parameters there are two aspects of prevention to consider. Firstly, we must understand the effectiveness of the environmental parameter to prevent the unexpected occurrence of a slip, trip, misstep, or other event which may lead to a fall (i.e. to prevent the balance loss from occurring in the first place). In addition to preventing the balance loss from occurring, we must also understand the effectiveness of the environmental parameter to prevent a fall from occurring when an unexpected event occurs and an appropriate balance recovery reaction is required. In general, this component of addressing stair falls has been much more difficult to evaluate in a laboratory environment given concerns with safely simulating stair falls. Adding to this challenge, ~ 40% of falls on stairs result in backward rotation of the body, while 50% of falls result in forward rotation. These distinct forms of balance loss on stairs place different demands on whole-body control to generate sufficient recovery reactions and should be uniquely simulated in the laboratory environment. To date, several methods to simulate stair falls have been employed in our lab, including support surface removal, support surface rotations and translations, and induced slips. While some of these methods produced the intended type of balance loss, there was significant variability in global recovery responses between participants. In the case of handrail usage specifically, evaluation of size and shape parameters on comprehensive biomechanical measures is a challenge given the lack of repeatability. To address this, a maximum withstood perturbation protocol (MWP) has been implemented; perturbations are delivered via support surface translations demanding participants to reach and grasp for a nearby handrail without stepping. The perturbations increase in magnitude until the participant fails. The MWP permits us to create a repeatable testing protocol where full handrail reliance is required and systematic modifications in design parameters can be assessed. The external validity of this testing paradigm, however, remains unknown. Moving forward, this research will comprehensively evaluate parameters of stair and handrail design to support effective balance recovery reactions, including more detailed analyses of stepping and grasping responses considering age and impairment. Ongoing work is actively being translated to policy makers in CANand internationally to inform stair and handrail codes and standards.

S.12ii

Stair biomechanics in ageing and diabetic neuropathy: Personal factors underpinning fall risk

Neil Reeves¹

¹Manchester Metropolitan University

Stair negotiation is one of the most physically challenging activities performed on a daily basis with evidence from studies in both young and older adults measuring joint moments on stairs of standard dimensions. The challenging nature of stair negotiation is particularly evident at the ankle joint where older adults need to employ biomechanical strategies to remain

ToC

within the limits of their maximum joint moment capacity. On standard rise stairs (170mm), older adults are able to control their descent through increased co-contraction of knee and ankle extensor muscles in a way that reduces their downward centre of mass (CoM) velocity and acceleration compared to young adults. This 'conservative strategy' likely compensates for their reduced lower limb strength, since upon landing, older adults are much slower at arresting downwards CoM velocity compared to young adults. Slower attenuation of the landing impact stems from a reduced ability to generate adequately high eccentric ankle moments at high angular velocities and necessitates using the lowering leg to minimise the loads on the outstretched landing leg. Older adults adopting a sideways stepping strategy (facing sideways, two feet on each step) minimise the elevated joint moment demands at an increased rise height (170mm to 220mm) compared to a typical 'step-over-step' strategy (facing forwards, one foot on each step) and a step-by-step strategy (facing forwards, two feet on each step). Notably, there was minimal increase in ankle joint moment with this sideways stepping strategy and even a slight reduction in the landing limb. Sideways stepping may therefore be considered as a useful strategy to minimise ankle joint moment demands in high fall-risk groups on stairs. The response of the landing limb during stair descent is particularly important in arresting the CoM velocity and ensuring a controlled landing. Whilst ageing reduces ankle strength capacity, diabetic peripheral neuropathy (DPN) not only reduces ankle strength but involves a complete absence of foot sensation affecting knowledge of foot-ground contact. People with DPN pre-activate plantar flexor muscles earlier while the landing limb is being lowered onto the step during descent to compensate for absent sensation. Despite earlier pre-activation, this clinical population shows a much slower rate of ankle joint moment development after contacting the step compared to matched-controls without diabetes and a group with diabetes but no neuropathy. This has implications for limb instability and unsteadiness. Overall, marked impairments to balance control on stairs have been observed in patients with DPN compared to controls and a group with diabetes but no neuropathy. Impaired sensory perception and motor control in the lower limb with DPN is therefore a key factor influencing joint moment development and balance control, placing this clinical group at particularly high risk for falls.

S.12iii

Using visual markings to enhance the visual environment on stairs and reduce stair fall-risk Richard Foster¹

¹Liverpool John Moores University

Ambiguous visual properties of stair surfaces are important contributing factors to risky behaviour which can lead to stair falls. Age-related declining visual function or onset of visual impairment contribute to older adults being more susceptible to stair falls. Additional environmental visual factors that contribute to stair negotiation being so challenging include low lighting levels, patterned surfaces and surfaces that are uniform in colour (e.g. Fig. 1A). Locating a stair edge may therefore be easier with the presence of visually contrasting strips (edge highlighters), placed across the stair tread to clearly delineate the edge from the rest of the tread. However, incorrect positioning of edge highlighters on stair treads can also be dangerous. Our previous work has shown that when misleading edge highlighters are set back from the tread edge (e.g. by up to 30 mm), as commonly seen on public stairwells, foot clearances in young and older adults are significantly closer to the tread-edge. Furthermore, for stairs that are uniform in colour or with misleading edge highlighters, accidental foot contacts increase, especially for those with visual impairment. We suggest that an edge highlighter placed flush with the tread-edge clearly delineates the tread from the step below, enabling adequate and less variable foot clearance. Visual markings on surfaces may also alter visual perception or create an illusory effect (e.g. exposure to patterned surfaces on carpets in the home or tiled pavements/sidewalks). Our computer-based perception tests were previously developed to assess perceptual responses to various visual cue configurations on stairs in young adults. The visual cues appeared as black and white vertical stripes arranged at varying spatial frequencies on a stair riser with an abutting edge highlighter on the stair tread (Fig. 1B), representing a version of the horizontal-vertical illusion (Fig. 1C). Young adults significantly overestimated (up to 25%) the true height of stair risers (190 mm) compared to a plain riser, and the magnitude of overestimation tended to increase with increasing spatial frequencies. When the striped visual cue was superimposed on to physical steps and stairs, there was a significant increase in foot clearance (approximately 1 cm; 17.5%) for older adults during stair ascent, with no accompanying destabilizing effects on postural stability. This suggests there may be a link between what participants visually perceive and their corresponding stepping action. Ongoing research is focused on determining if there is an explicit perception and action link in older adults in response to the visual cue on stairs, and whether the striped visual cue can be simplified in appearance (reduced spatial frequency) and remain effective. Understanding this could help in determining visual cues suitable to place on home or public stairs to help improve stair safety for older adults.

S.12iv

Studying the interplay between cognitive factors and stairwell illumination to better understand falls risk during stair descent

Mark Hollands¹, Neil Thomas¹

¹Liverpool John Moores University

BACKGROUND AND AIM: Our previous work has shown how cognitive factors such as self-confidence and anxiety can influence where individuals look during adaptive locomotor tasks. For example, when walking on targets and stepping over obstacles anxious older adults tend to look away early from imminent obstacles to look at future hazards which, paradoxically, results in reduced stepping accuracy and increased risk of tripping on the imminent obstacle. Stair walking represents a particularly hazardous locomotor activity which can evoke strong feelings of anxiety and fear of falling in older adults especially when illumination levels are low or stair dimensions are challenging or irregular. Cognitive factors such as anxiety and fear of falling influence where and when individuals look on stairs, especially at low light levels, which has repercussions for their walking safety. For example, older adults tend to look less far ahead (i.e. closer to their feet) during stair descent resulting in altered head posture and associated destabilizing changes to centre of mass behaviour. Adequate illumination is important for stair safety. Lighting has become particularly pertinent since incandescent bulbs were banned in many countries, resulting in households using energy saving compact fluorescent lamp (CFL) bulbs. These can take minutes to reach full brightness, which may leave stairwells poorly lit during initial use. Light emitting diode (LED) bulbs are also energy efficient, but reach full brightness immediately and may offer a better alternative. Our own analysis of light bulb characteristics has clearly demonstrated that "Low" and "high" power CFL bulbs only produced illumination of 10 and 20 lux respectively averaged over the time taken to descend the stairs. This compared to 35 and 112 instantaneous lux from the low and high power LED bulbs. In order to determine the extent to which stair walking safety was affected by these varying levels of illumination (together with a very bright 300Lux illumination representing optimal lighting), whole-body 3D kinematics (Vicon motion analysis system) and force platform kinetics (3 Kistler force platforms) were recorded to quantify various biomechanical markers of stepping safety and postural stability. **RESULTS**: During low illumination conditions both younger and older adults report lower self-confidence in their ability to descend stairs safely (Figure 1A) yet only younger adults appear to compensate by adjusting their walking strategies to increase postural stability e.g. by reducing the variability in their trunk vertical acceleration during weight transfer from one step to another (Figure 1B). CONCLUSIONS: The implication of these results, (together with those from ongoing analyses of biomechanics and gaze behaviour), for falls risk assessment, individualised falls prevention interventions and built environment design will be discussed.

S.13: Early development of human locomotion and its functional consequences

Chair: Yury Ivanenko Fondazione Santa Lucia, ITA Location: Fintry suite (level 3) Moderators: Marianne Barbu-Roth Paris Descartes University, FRA David Anderson San Francisco State University, USA

S.13i

What does newborn skateboarding tell us about the ontogeny of human locomotion?

Marianne Barbu-Roth¹, David Anderson², Vincent Forma¹, Joëlle Provasi³

¹Paris Descartes University- CNRS, ²San Francisco State University, ³Ecole Pratique des Hautes Etudes

BACKGROUND AND AIM: The acquisition of bipedal locomotion is a celebrated milestone in infant development. However, most human infants start to crawl long before they walk and even without practice, adults retain remarkable

2019 ISPGR WORLD CONGRESS

ToC

2019 ISPGR WORLD CONGRESS

ToC

crawling capacities. This common observation raises important questions about the connection between bipedal and guadrupedal locomotion and the development of both forms of locomotion during early infancy. Even adult upright bipedal locomotion is not free of quadrupedal mechanisms, with the arms mirroring the motions of the legs, but perhaps more surprising and puzzling are recent reports of a functional guadrupedal organization of the spinal networks underlying walking. When and how does this quadrupedal organization emerge during infant development? Extensive studies of upright bipedal stepping in the newborn have created the impression that humans are born bipeds. In our current study, we challenge this notion by showing that 2-day-old newborns are functional guadrupeds. METHOD: The existence of this independent guadrupedal locomotion was revealed by using a mini skateboard that supported the newborn's head and trunk and freed the arms to move. We tested 60 at-term typical newborns in two one-minute randomly-ordered conditions: (i) crawling in a prone position on a Mattress (Mattress condition) and (ii) crawling on the mattress with the mini skateboard (Crawli condition). The number and characteristics of the infant's leg and arm locomotor movements were captured using synchronized video and infra-red motion capture cameras. **RESULTS**: In the Crawli condition, the analyses of the number and types of limb movements and their characteristics, the coactivation of limb pairs, and the displacement across the surface, revealed that newborns are able to use arms and legs to crawl with locomotor patterns similar to those documented during quadrupedal locomotion in animals and human adults. In the Mattress condition, newborns were not able to move their arms and propel themselves, as they were impeded by the weight of their head and trunk. **CONCLUSIONS**: This discovery questions the well-established bias toward studying newborns as bipeds and lends credence to the idea that all forms of locomotion, including bipedal gait, could be organized guadrupedally in humans and represented biologically in spinal neuromotor networks from birth. We propose that humans are born as quadrupeds and develop bipedal competencies later, in concert with maturationally- and experience-driven anatomical changes and practice locomoting in a variety of different contexts. This proposition has very important, though yet to be experimentally verified, implications for the design of interventions for infants at risk for locomotor delays. It suggests these interventions may be more efficacious at hastening the onset of independent walking if they promote guadrupedal locomotion in the early months of life.

S.13ii

Development of spinal locomotor output

Yury Ivanenko¹

¹IRCCS Fondazione Santa Lucia

INTRODUCTION. In this presentation, various findings, ideas and approaches will be considered that represent important conceptual frameworks for characterizing and understanding human locomotor development, with a particular emphasis on the first years of life. The spinal cord does not simply transmit information to and from the brain and its maturation and physiologic state determines reflex, postural and locomotor control. We will discuss recent advances in understanding how motor commands are expressed at different stages of human development. METHODS. The spinal locomotor output can be assessed by identifying the basic patterns of lumbosacral motoneuron activity from multimuscle recordings. The idea that the CNS may control complex interactions by modular decomposition has received considerable attention. Each human lower limb contains over 50 muscles, comprising many intrinsic foot muscles, that are coordinated during locomotion. It has been argued that the nervous system may control numerous muscles through modularity, using neural patterns to activate muscles in groups. We explored this idea for human locomotion by examining the spinal locomotor output during early development along with maturation of coordinated patterns of limb motion. **RESULTS**. The development of human locomotion from the neonate to the adult starts from a rostrocaudal excitability gradient in the spinal motor output and involves a progressive reduction of EMG burst durations and a functional reorganization of the pattern generation circuitry with increasing age. Furthermore, the accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk, as well as integration of proper load-related proprioceptive feedback. Foot placement patterns in human neonates and the episodes of alternating arm-leg oscillations suggest the potential contribution of load-related proprioceptive feedback and/or the expression of variations in the locomotor program already during early manifestations of stepping on ground in human babies. We will also present data on how early injuries to developing motor regions of the brain in children with cerebral palsy substantially affect maturation of the spinal locomotor output and consequently the future locomotor behavior. **CONCLUSIONS**. The complexity and flexibility of the spinal locomotor output changes with age. We discuss the precursor of the mature locomotor pattern in infants also in comparison with other animals.

S.13iii

Does balance help explain why infant crawling & walking induce changes in visual proprioception?

David Anderson¹, Minxuan He¹, Joseph Campos²

¹San Francisco State University, ²University of California, Berkeley

INTRODUCTION: Visual proprioception is the sense of self-movement produced by patterns of optic flow. Prior research has shown a dramatic shift in infants' responsiveness to peripheral lamellar optic flow (PLOF) following the onset of handsand-knees crawling, evidenced by their robust postural compensation to movements of the side-walls of a moving room. This shift in visual proprioception may be driven by the visual system's need to regulate multiple tasks during crawling. If balance control can be relegated to the periphery, then central vision is freed to monitor the environment to ensure the surface affords locomotion and obstacles and apertures are negotiated successfully. This explanation predicts that changes in visual proprioception would be less obvious for infants who initially crawl on their bellies because belly-crawling places limited demands on balance control. It is also possible that the onset of walking induces further changes in visual proprioception because walking demands a different type of balance control than crawling. We tested these predictions in three experiments. **METHOD**: Experiment 1 involved comparisons among 64 8-month-old infants categorized as pre-crawlers (n = 25), belly-crawlers (n = 15), and hand-and-knees crawlers (n = 24). Experiment 2 examined 7 infants with spina bifida across the transition to independent belly crawling. Experiment 3 examined 77 11.5-13.5 month-old infants who were categorized as: 1) proficient crawlers (n = 31), 2) less proficient walkers (n = 22), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 22), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 22), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 22), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (n = 31), 2) less proficient walkers (n = 32), and 3) proficient walkers (24). All infants were tested for responsiveness to PLOF from side-wall motion in a moving room. **RESULTS**: Experiment 1 revealed that hands-and-knees crawlers were significantly more responsive to PLOF than pre-crawlers (p = .04) and marginally more responsive than belly-crawlers (p = .06), whereas pre-crawlers and belly-crawlers did not differ from each other. Omnibus ANOVA: F (2, 61) = 3.93, p < .05. A Wilcoxon signed-ranks test on the spina bifida infants from Experiment 2 revealed no significant changes in responsiveness to PLOF across the transition from pre-crawling to belly crawling, Z = -.34, p = .81. The Experiment 3 results showed that the less proficient walkers were more responsive to PLOF than the proficient crawlers (p = .04) but not the more proficient walkers (p = .23), Omnibus ANOVA: F (2, 75) = 3.10, p < .05. **DISCUSSION**: These findings support the idea that the balance demands associated with new forms of locomotion drive important changes in visual proprioception. The acquisition of skills that place new demands on balance control appears to heighten responsiveness to visual input and facilitate the differentiation of information contained in patterns of optic flow and the subsequent mapping of this information onto motor control strategies.

S.13iv

The internal body representation in a developing brain

Christine Assaiante¹

¹CNRS

BACKGROUND AND AIM: In order to perceive and act in its environment, the individual's body and its interactions with the environment are represented in the brain. The precise knowledge about how our body is involved in action allows us to act or to interact with our social and non-social environment. At the cerebral level, this knowledge is stored in an internal representation labelled the body schema (BS). The BS is built through ontogenesis and is constantly updated using sensory information. Nevertheless, proprioception that encompasses the perception of positional changes and movements of body parts appears to be the most essential sensory modality to build and to update the BS. BS must be updated during development due to many factors such as morphological changes, acquisition of motor skills, and cognitive practice (Assaiante et al, 2014). METHODS: Using a neurosensory approach, the aim of our studies was to highlight the building of the BS through childhood (7-12 years old) and adolescence (13-17 years old) by exploring through proprioceptive integration the maturation of its cerebral basis and its link with behavioural improvement during development. To this end, brain imaging and behavioural performance requiring proprioceptive information were associated to explore the

different processes (i.e. perception-action coupling, sensory integration) leading to the elaboration and to the update of an internal body representation in a developing brain. **RESULTS**: Our results reveal that the neural basis subtending the BS was already well established as early as the age of 7, although still immature in some aspects. This included a lower level of somatosensory and posterior parietal regions activation, and the exclusive activation of the frontopolar cortex in children compared to adults (Fontan et al, 2017). We also found that proprioceptive network is still undergoing refinement during adolescence, including a shift from diffuse to focal Functional Connectivity (FC) and a decreased FC strength. This developmental effect was particularly pronounced for frontostriatal connections. Furthermore, changes in FC features continued beyond adolescence, although to a much lower extent. (Cignetti et al, 2016). CONCLUSION: Altogether, these findings support the slow maturation of the proprioceptive integration and point to a protracted developmental time course for the BS network, which breaks with the relatively early functional maturation often associated with sensorimotor networks. References: Assaiante, C., Barlaam, F., Cignetti, F., Vaugoyeau M. (2014). Building of body schema during childhood and adolescence: a neurosensory approach. Neurophysiologie Clinique / Clinical Neurophysiology, (2014) Cignetti, F., Fontan, A., Menant, J., Nazarian, B., Roth, M., Anton, JL., Vaugoyeau, M., Assaiante, C. (2016). Early adolescence as a main time window of plasticity in organization of the proprioceptive brain network. Cerebral Cortex, 27: 1285-1296.

S.14: Maximising interdisciplinary methods to assess falls risk in clinical groups

Chair: Chesney Craig Manchester Metropolitan University, GBR Moderator: Clemens Becker Robert-Bosch Hospital, GER Location: Sidlaw suite (level 3)

S.14i

An interdisciplinary approach to assess the electrophysiological, kinematic and gaze factors related to gait and fall risk in older adults

Chesney Craig¹, Paul Holmes¹, John-Stuart Brittain², Will Young³, Zoe Franklin¹, Nicola Ray¹

¹Manchester Metropolitan University, ²University of Birmingham, ³Brunel University London

PURPOSE AND BACKGROUND: Early identification of individuals at high risk of falls is essential to ensure efficient fall prevention interventions. Given the heterogeneity of fall accidents that are experienced by some older adults, it is important to utilize a multifactorial approach to assess fall risk. Although multifactorial approaches have successfully identified a number of functional and behavioral outcome measures that can predict subsequent falls, less is known about the neural profile associated with fall risk. The advent of mobile electroencephalography (EEG) technology and advanced signal processing algorithms have enabled remote online measurement of neural activity during active gait, which may provide unique insights into the neural control of asymptomatic and clinically-impaired gait. The field is, however, still in its infancy and we are unaware of any publication to date that has used mobile EEG in a clinical population during natural gait. This talk will outline how we have employed an interdisciplinary approach to provide a comprehensive characterization of the neural, kinematic, muscle, gaze and psychological factors that may discriminate fallers from non-fallers during naturalistic gait, adaptive gait and obstacle avoidance. **METHODS**: We present a novel experimental method that combines mobile 64-channel EEG, wireless electromyography (EMG), motion tracking and mobile eye-tracking, to assess naturalistic gait and obstacle avoidance in older people with (N = 20, Mage = 72.32 ± 5.58) and without identified fall risk $(N = 20, Mage = 73.32 \pm 4.55)$, compared to young adults $(N = 20, Mage = 27.75 \pm 4.96)$. These variables were assessed simultaneously during a 2-minute looped walk, followed by a walking and turning on cue' task, which assessed adaptive gait and obstacle avoidance. Participants walked either straight towards the end of a 6.5m walkway or turned right or left at an intersection depending on a visual cue presented during the walk. During half of the walking trials, an obstacle was present in one of the pathways. Independent Component Analysis was used to remove movement-related artifact from the EEG signals. Ongoing data analysis (at the time of writing) will analyze group differences in gait variables, lower-limb muscle activity, task-relevant gaze fixations and EEG â band oscillations during each gait condition. **DISCUSSION**: This complex multi-modality experimental protocol considered interactions between related disciplines for a more valid study design, implementation, analysis and interpretation. The interdisciplinary approach, its implementation and current results highlight important implications for assessing fall risk in older adults. In addition, we will outline how the strengths and limitations of our experimental approach provide insights for future research. Recommendations based on this study are currently being implemented in a similar protocol investigating fall risk in Parkinson's Disease.

S.14ii

Sensorimotor, neuropsychological and daily-life gait assessments to identify people at high risk for falls

Kim van Schooten¹

¹Neuroscience Research Australia/University of New South Wales

PURPOSE AND BACKGROUND Falls are a multifactorial problem with causes amongst sensorimotor, cognitive and affective domains. Whilst there is a range of tools for assessing fall risk, few encompass all these domains. Moreover, recent studies suggest that not only one's balance abilities but also their activity behaviour affect the probability of experiencing a fall. This presentation will address the utility of clinical tests and daily-life gait to identify people at high risk for falls. It will draw upon multidisciplinary studies to discuss the strengths and weaknesses of these approaches and presents results of an interdisciplinary study combining these techniques to assess fall risk. **METHODS** The first part of the presentation will consider recent observations on multifactorial risk factors for falls in general and clinical ageing populations. We pooled data of 1,230 participants (74±10yrs; 6409), including 500 community-dwelling older people and four clinical groups with balance disorders (Parkinson's disease, N=312; dementia, N=175; stroke survivors, N=140; multiple sclerosis, N=111), to characterise similarity in risk factors for falls. Our results confirm that deficits in cognition (executive function) and affect (depressive symptoms, concern about falling) are at least equally important as sensorimotor function in fall-risk prediction and should therefore be included in routine clinical assessment. The second part of the presentation will review current evidence for using daily-life gait characteristics to identify people at risk for falls. This part will touch upon dependency on activity recognition, estimation of characteristics, models used to predict risk and fall-risk definitions. Recent work on the predictive ability for falls of daily-life gait characteristics combined with clinical tests of sensorimotor, cognitive and affective function in older people will be presented and compared to previous work. **DISCUSSION** Taken together, the studies will provide an overview of interdisciplinary approaches, combining sensorimotor, neuropsychological and daily-life gait assessments, to assess fall risk in various populations. Transdisciplinary collaboration is needed to implement these assessments into clinical practice.

S.14.iii

Addressing misconceptions relating to fear of falling and the control of adaptive gait

William Young¹

¹Brunel University London

BACKGROUND AND AIMS: The problem of how to predict and prevent falls is a major concern for governments and health services dealing with the wide-ranging economic and social consequences of falls and related injuries. Over recent decades much research has been carried out to identify physical, social and environmental risk-factors for falls. Factors within each of these categories can serve as strong predictors of fall-risk, particularly concerning measures of functional balance. However, some researchers argue that too much emphasis is placed on simple clinical outcome measures, in part, because such tests are generally considered to encompass physiological status along with numerous trait and state factors relating to individual differences in disposition etc. This being the case, such assessments are not sensitive to certain specific dispositions and associated behaviours that might have an independent role in influencing balance in specific tasks/contexts. Being fearful of falling is an example of such a disposition. Much research has demonstrated the impact that fear of falling (or concern about one's balance ability) can have on functional outcomes associated with fall-risk. However, researchers have only recently started to evaluate how fear of falling (and related state anxiety) can influence attentional processes/biases and associated prioritisation strategies during movement planning and execution. METHODS AND **RESULTS**: This presentation will cover examples of potential misinterpretations evident in the literature, relating specifically to how fear of falling influences the control of balance and adaptive gait. In particular, the talk will focus on mechanisms suggested to underpin conservative movement strategies observed in fearful older adults (including increased muscle co-contractions and reduced visual search behaviour). Examples will be given from my own laboratory where we applied

extant anxiety-related psychological theories (e.g., Reinvestment and Attentional Control Theory) to the context of ageing and falls, only to establish through incremental studies that the perspectives set out by such theories do not always readily translate and, in some cases, can lead to misconceptions that cause fundamental problems with our capacity to interpret findings. The objective of this presentation is, therefore, to promote discussion about how we can be vigilant to potential misconceptions so that we might best-inform the selection of specific outcome measures used in future research. **CONCLUSIONS**: The presentation will conclude with a summary of what 'we think we know now' in the context of anxietyrelated changes in attention during gait, along with recommendations for how current knowledge can be utilised by future cross-sectional and prospective studies evaluating fall-risk in older adults.

S.14.iv

Automatic recognition of gait patterns with machine learning

Yuhan Zhou¹, Tibor Hortobágyi¹, Claudine Lamoth¹ ¹University Medical Center Groningen

PURPOSE AND BACKGROUND: Physical, emotional, cognitive, behavioral and social factors and their interactions underlie gait and balance abilities and fall risk in older adults. The International Classification of Functioning, Disability and Health (ICF) model can be used as a framework to examine the multifactorial nature of gait and balance decline and fall risk. For machine learning to contribute significantly and meaningfully to the understanding and prevention of fall risk and the estimation of movement related disorders, the collaboration between different disciplines (clinicians, physiotherapists, data scientists,) is necessary. Here, we present a model using an aggregate analysis of gait accelerometer data from healthy adults and geriatric patients. The first purpose of this study was to identify the most accurate machine learning method to automatically classify gait patterns in groups of participants; the final purpose of the model is to early identify at-risk gait and evaluate treatment outcomes. **METHODS**: Healthy young and middle-aged adults (n=58, age: 42.7±16.60), healthy old adults (n=54, age: 74.6±5.71), and geriatric patients without cognitive impairment (n=126, age: 79.3±5.81) participated in this study. Trunk accelerations were measured with 3D accelerometers (DynaPort® MiniMod, McRoberts BV & iPod touch 4G, iOS 6, Apple Inc.; sample frequency±100 Hz) during three minutes of walking. From the 3D accelerometer signals, we extracted 23 dynamic gait variables guantifying gait pace, stability, regularity, variability. A Kernel Principal Component Analysis (KPCA) was applied to extract underlying gait features and reduce the dimensionality of the data for Support Vector Machine (SVM) classification, compared other machine learning methods Random Forest (RF) and Artificial Neural Network (ANN) with raw features. These methods also can be extended for other kinds of variables to predict different labels, such as fall risk and Parkinson's disease. **RESULTS**: KPCA reduced gait data dimensions efficiently from 23 dimensions to five dimensions, explaining 97% of the variance, and representing gait features of pace, synchronization, regularity, and variability. Preliminary analyses showed that both SVM (accuracy=89%, AUC=0.91) and ANN (accuracy=90%, AUC=0.87) could differentiate gait patterns between the three age-based groups. RF was sensitive to parameter selection and results in worse classification performance (accuracy=73% and AUC=0.86). **CONCLUSIONS**: Aging affects specific gait features that can be identified by non-linear approaches such as KPCA followed by SVM or ANN classifiers. Both of these classifier methods reveal differences in temporal gait characteristics between age groups. Future analyses will add data on person's objective and subjective measures at the different levels of the ICF model. In addition, different machine learning models will be added to investigate labelled disorders, to finally predict the risk of falling.

┥ ToC

S.15: STOP! Age-related changes in sensorimotor inhibition and the associated implications for impaired gait and balance control

Chair: **Brett Fling** *Colorado State University, USA* Location: Pentland suite (level 3)

S.15i

Age-related reductions in tactile and motor inhibitory function start early: Implications for gait and balance

Rachael Seidler¹, Marit Ruitenberg, Kaitlin Cassady, Kathleen Hupfeld¹

¹University of Florida

BACKGROUND AND AIM: Previous work documents that surround inhibition and intra-/interhemispheric inhibition in the somatosensory and motor systems are mediated by gamma-aminobutyric acid (GABA). Surround inhibition describes cortical lateral inhibition of surrounding receptive fields upon skin contact or muscle activity, resulting in a sharper neural representation of stimuli. Surround inhibition has also been shown to extend to contralateral homologous representations and to the motor system. The effects of healthy aging on these inhibitory functions and their underlying mechanisms are neither well characterized nor understood. Thus, in the current study we determined tactile thresholds for a given finger while either a neighboring or the contralateral digit were simultaneously stimulated; this allowed us to test tactile surround inhibition in individuals across a wide range of ages. We also used bimanual motor tasks to assess motor intraand inter-hemispheric inhibition to illustrate the trajectory of decline and to test for associations between age differences in the two systems. **METHODS**: Participants ranging from 18 to 76 years old performed assessments of tactile and motor inhibitory function. To evaluate tactile surround inhibition, we determined tactile thresholds for a given finger while either a neighboring or the contralateral digit were simultaneously stimulated. Typically, this results in higher (i.e., less sensitive) tactile thresholds, due to surround inhibition. Since inhibitory function declines with age, however, we predicted that low amplitude stimulation on a neighboring finger would decrease tactile thresholds for older adults due to "spillover" effects. Participants also performed motor tapping tasks requiring asynchronous movements of two neighboring digits or of two homologous digits (i.e. bimanual actions), which we have previously linked to inhibitory function. **RESULTS**: Older age associated with greater decreases in tactile detection threshold when a stimulus was simultaneously applied to a neighboring or the contralateral homologous finger. These findings are indicative of age-related declines in surround inhibition. Additionally, increasing age was significantly associated with poorer performance on the motor task requiring asynchronous actions of neighboring fingers on the same hand, again supporting reduced intrahemispheric inhibition with age. Declines in inhibitory function were evident starting in the fifth decade of life, but were not correlated between tactile and motor systems. **CONCLUSIONS**: Our findings demonstrate that aging impacts tactile and motor inhibitory function, particularly for behaviors that are mediated by GABA neurotransmission. In ongoing work we are evaluating whether similar age declines in inhibitory function are evident for the lower limbs, are associated with magnetic resonance spectroscopy measures of GABA, and are associated with age declines in gait performance. NIH 1R56AG043402.

S.15ii

The effects of age and task difficulty on the neural control of standing balance

Tibor Hortobagyi¹, Tulika Nandi¹, Selma Papegaaij²

¹University Medical Center Groningen, University of Groningen, ²MOTEK

BACKGROUND AND AIM: We examined the hypothesis that when quiescent standing is challenged by reductions in base of support, sensory perturbations, or old age, motor cortical (M1) supervision of standing balance becomes necessary with a putative role assigned to the GABAergic inhibitory system. **METHODS**: We collected transcranial magnetic stimulation

data while healthy adults stood in a wide, narrow, tandem, and one-legged stance and healthy young and old adults stood with and without support at the chest, stood on a rigid and foam surface with eyes open or closed, and sat or leaned forward with and without a support at the chest. We also examined the effects of a simulated balance task on dual-task costs while lying in an MRI scanner. **RESULTS**: While the net corticospinal input to biomechanically relevant leg muscles increases with reductions in base of support in the mediolateral direction and GABAergic inhibition decreases, these outcomes do not correlate with sway magnitude (1,2). Likewise, M1's involvement became more prominent in free vs. supported standing (3). There also was disinhibition of M1 in standing independent of age but an age-specific reduction in GABAergic intracortical inhibition that correlated with center of pressure velocity when subjects stood on foam, a proprioceptive perturbation (4). When healthy young and old adults sat and voluntarily leaned forward with and without a chest support, the area of EMG suppression produced by brain stimulation, i.e., GABAergic intracortical inhibition, was ~60% smaller in unsupported vs. supported leaning and sitting, with no difference between these latter two conditions (5). Leaning closer to the maximum without support correlated with less M1 inhibition. While age did not affect the motor control strategy as quantified by the modulation of M1 activity, the modulation appeared at a lower task difficulty with increasing age. The critical factor in modulating M1 activity is postural challenge instead of contraction aim (voluntary, postural) or posture. When standing difficulty was simulated in an MRI scanner by keeping a forward or backward falling avatar vertical by plantarflexing toward a load cell in combination with a calculation task, the age-related increase in brain activation and dual-task costs did not correlate, suggesting that the dual-task costs were not due to increased structural interference (6). **CONCLUSION**: When quiet standing is challenged by reductions in base of support, sensory perturbations, or old age, motor cortical supervision of standing balance becomes evident. Future experiments will clarify if age- and task-differences in M1 activation underlie impaired postural control and postural instability. 1. Nandi GP 60:135-140, 2018. 2.Nandi FHN12:303, 2018. 3.Papegaaij EJAP 116:959-967, 2016. 4.Papegaaij FAN 6:28, 2014. 5.Papegaaij EG 73:78-85, 2016. 6. Papegaaij PONE 12(12):e0189025, 2017.

S.15iii

Effects of age and mental fatigue on dynamic postural control

Anita Christie¹, Amanda Morris²

¹The University of Western Ontario, ²The University of Oregon

BACKGROUND AND AIM: Mental fatigue is a psychophysiological state that occurs after or during prolonged periods of cognitive activity. Older adults report higher levels of fatigue than young adults, which is associated with impaired motor performance. Despite these important associations, little is known about the direct impact of mental fatigue on physical function. The reduction in attentional resources that occurs with mental fatigue may exacerbate compromises in balance control in older adults. The aim of this work is to examine the impact of mental fatigue on postural control in older adults and to identify neural contributions to reduced function. **METHODS**: We examined the impact of mental fatigue on responses to postural perturbations in young and older adults. Participants stood on two force platforms that were anteriorly translated at random intervals before, during and following a mentally fatiguing task. Postural responses to the perturbations and assessments of neuromuscular properties, including transcranial magnetic stimulation measures of corticospinal excitability and intracortical inhibition were assessed before, during and after the mentally-fatiguing task. In a sub-group of young individuals with reported high levels of mental fatigue and measured impairments in gait balance control, magnetic resonance spectroscopy was used to assess concentrations of glutamate and gamma-aminobutyric acid (GABA) in the primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC). **RESULTS**: Older adults had slower reaction times and greater postural responses to perturbations than young. Mental fatigue did not differentially affect the magnitude of the postural responses in young and older adults. However, the velocity of the postural responses to perturbations was slower in older adults compared with young, during conditions of mental fatigue. Older adults had a greater reduction in overall muscle activity during the postural response following mental fatigue than young. Relative to young, older adults showed a similar change in corticospinal excitability in response to mental fatigue, but a greater change in intracortical inhibition. In a population of individuals who report high levels of mental fatigue, and demonstrate impaired dynamic balance control, we have shown a lower glutamate:GABA ratio in M1, but a higher Glutamate:GABA ratio in the DLPFC. **CONCLUSION**: The condition of mental fatigue may impact some aspects of dynamic balance control, particularly in older adults. Concurrent changes in muscle activation and intracortical inhibition suggest central factors involving inhibition are likely involved in the observed alterations in postural control. The region-specific imbalances in neurotransmitters in a sub-group of young individuals may help to inform observed changes with mental fatigue in older adults.

🗧 ToC

S.15iv

Age-related differences in associations between dynamic gait characteristics and motor cortex inhibition

Brett Fling¹, Clayton Swanson¹

¹Colorado State University

BACKGROUND AND AIM: Healthy aging is associated with structural and functional alterations in the brain and declines in multiple facets of motor performance including gait, balance, and motor coordination. For example, interlimb coordination and performance during turning both diminish with age, posing a risk for gait-related injuries. Cortical inhibitory processes are essential for optimal motor control and undergo age-related alterations that may account, at least in part, for these behavioral deficits. In this regard, a key role is played by gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter within the nervous system. Recent studies demonstrate that levels of motor inhibition are related to GABAergic function and that levels of GABA diminish with advancing age. In fact, levels of inhibition within the motor cortex are significantly associated with coordination of the upper extremities, however, it is unknown if this same association exists for dynamic lower extremity control required for daily tasks such as coordinating the legs while walking and turning. **METHODS**: Our results are from a current sample of nearly 50 healthy adults, comprised of younger (18-30 years old) and older adults (65-80 years old). Cortical inhibition is assessed via the cortical and ipsilateral silent period within the dominant and non-dominant cortical hemisphere, both of which are elicited by TMS within muscles of the lower extremities. Dynamic measures of gait, including the phase coordination index and multiple measures of turning performance, are collected and analyzed through the use of six, wireless inertial sensors during 2- or 6-minute over-ground walking trials at a self-selected pace. **RESULTS**: We report that older adults demonstrate significantly reduced performance during turning coupled with reduced coordination and increased variability during over-ground walking, compared to a younger cohort. In addition, we report reduced cortical inhibition within the non-dominant (right) motor cortex of these older adults. Interestingly, measures of gait coordination and variability demonstrated a positive relationship with cortical inhibition in the younger adults, while there was a negative correlation between inhibition and these same behavioral measures in older adults. Furthermore, motor cortex inhibition was significantly associated with multiple turning characteristics. **CONCLUSIONS**: Taken together, these results propose a fundamental difference in the relationship between motor cortex inhibition and lower extremity control with age; younger adults are better able to maintain lower extremity coordination and variability with reduced cortical inhibition, whereas older adults with increased cortical inhibition demonstrate better mobility performance. Importantly, these findings are complimentary to previous work demonstrating age-related differences in the association between motor cortex inhibition with bimanual control.

All authors (lead and additional) and presenters are listed here for easy cross-referencing to their respective abstract. The list of full abstracts is available as a download from the ISPGR website (*www.ispgr.org*) and on the conference app.

Interpreting the presentation numbers:

The first section of the number represents the type of presentation as follows:

- **O** Oral presentation
- S Symposium presentation
- P1 Poster Session 1
- P2 Poster Session 2
- P3 Poster Session 3

ΝΔΜΙ

The second section represents the session number for Oral and Symposium presentations or the subject theme for posters.

The third section indicates the order of presentation for oral and symposium presentations or poster number.

NAME	POSTER NUMBER	NAME
Aaslund, Mona K	P1-C-12	Aizenstei
Abbruzzese, Giovanni	P3-A-1	Ajjimapoi
Abe, Tetsuya	P1-U-155, P3-W-181	Amornpa
Åberg, Anna Cristina	P1-F-41	Ak, Deniz
Abossolo, Olivier	P3-V-161	Akcay, Em
ckerley, Rochelle	P1-E-33	Akhpashe
Ackermans, Thijs	P2-N-104	Alamos, M
da, Louise	P3-Q-127	Al-Amri, I
dkin, Allan L	P1-B-11, P2-G-45	Albin, Rog
dler, Jochen	P2-B-9	Alcock, Li
dler, Werner	P3-M-95	
fschrift, Maarten	0.5.vii	
Afzal, Muhammad	S.9ii	Aldunate, Alenazi, A
urqan Iqarwal, Kshitij	P1-W-184	Alexande
gathos, Catherine P	P2-C-12	Alexandre
gmon, Maayan	0.2.iii, P2-N-105	Al-Fazly,
hmaidi, Said	0.6.iv	Alghadier
imonetti, Jean-Marc	P1-E-33	Alizadehs
isenshtein, Alina	P1-I-82, P2-H-73, P3-H-52	Aljaroudi,
itcheson-Huehn,	P2-D-23	Allali, Gill
Nikki		Allcock, L

DOSTED NIIMPER

NAME	POSTER NUMBER
Aizenstein, Howard	P2-E-36
Ajjimaporn,	P2-0-127
Amornpan	
Ak, Deniz	P1-H-55
Akcay, Emre M	P2-P-129, P2-V-164
Akhpashev, Alexander	P3-R-152, P3-R-153
Alamos, Maria F	S.9iii, P2-K-87, P3-K-91
Al-Amri, Mohammad	P2-M-103
Albin, Roger L	0.1.i
Alcock, Lisa	P1-C-19, P1-N-107,
	P2-Q-131, P2-Q-141,
	P2-Q-151, P3-E-29
Aldunate, Roberto G	P1-W-182, P2-W-181
Alenazi, Aqeel	P1-H-53
Alexander, Neil	P2-N-110
Alexandre, Tapin	0.3.iv
Al-Fazly, Hussein	P1-H-55
Alghadier, Mshari	P1-V-156
Alizadehsaravi, Leila	P3-B-4
Aljaroudi, Ali M	P3-Q-124
Allali, Gilles	0.2.vi, P2-C-13
Allcock, Liesl	P3-E-38

ToC

70

THEME CODE Activity monitoring Α В Adaptation, learning, plasticity & compensation С Aging D Biomechanics Ε Brain imaging/activation during posture & gait F Cognitive impairments G Cognitive, attentional, and emotional influences н Coordination of posture and gait Development of posture and gait Т J Developmental disorders Κ Devices to improve posture and gait L Effect of medication on posture and gait Μ Exercise and physical activity Ν Falls and fall prevention 0 Habilitation & rehabilitation Ρ Modeling Q Neurological diseases R Orthopedic diseases and injuries S Proprioceptive function and disorders Т Psychiatric disorders U Robotics V Sensorimotor control

- Tools and methods for posture and gait analysis W
- Х Vestibular function and disorders
- v Visual function and disorders

NAME	POSTER NUMBER	NAME	POSTER NUMBER
Allen, Natalie E	P3-Q-133	Anderson, David I	S.13i, S.13iii
Allen, Sarah	P3-H-53	Anderson, Ross W	S.9ii
Allinson, Gemma	P1-J-85, P2-J-83	Andrews, Mark	P2-G-52
Allsop, Jonathan	P1-N-119	Angeluni, Emanuella	P2-C-18
Allum, John H	P1-K-88, P2-X-183	0	
Almarwani, Maha	P2-H-53	Angin, Salih	P1-W-179, P2-D-26
Almeida, Quincy	P1-F-43, P1-Q-149	Anidi, Chioma M	S.9ii
Alpes, Annekathrin	P1-C-16	Anisimov, Victor	P1-I-82
Algahtani, Bader	P1-H-53	Anson, Eric	P1-H-54
Alshehri, Mohammed	P1-H-53	Aoki, Mitsuhiro	P3-X-184
Alves, Natália	P1-C-20, P2-C-18	Aqui, Anthony	P1-W-177, P3-Q-130
Amaral, Vitor S	P1-J-83, P2-Q-132	Aranda-Moreno,	P2-X-188
Ambike, Satyajit	P2-N-112, P3-N-102	Catalina	
Ameida, Quincy J	P1-Q-144	Archambault,	P2-H-74
Aminian, Afshin	P1-I-76, P3-I-76	Philippe S	
Aminian, Kamiar	P1-C-24, P1-M-101,	Arcodia, Maelyn	P1-H-58
	P2-A-1, P2-A-2, P2-W-	Arleo, Angelo	P2-C-12
	176, P3-C-18	Armand, Stephane	P2-C-13
Amundsen	0.1.vii, P1-Q-141	Armitano, Cortney N	P3-Q-137
Huffmaster,		Arnaud, Delval	P3-Q-126
Sommer L		Arora, Tarun	P1-V-161, P2-B-4
Anctil, Noémie	P1-V-159	Arpini, Vitor M	P1-V-163

NAME	POSTER NUMBER
Arshad, Qadeer	P1-H-55, P2-X-184,
Aryan, Raabeae	P3-G-46, P3-G-48 P1-W-177, P2-W-169
Asaka, Tadayoshi	P3-I-80, P3-Q-129
Asari, Aya	P2-W-177
Ash, Elissa	P1-C-17
Askim, Torunn	P1-0-124
Assaiante, Christine	S.13iv, P3-J-81
Assal, Frederic	P2-C-13
Assländer, Lorenz	P2-P-129, P2-V-164, P3-V-158, P3-V-166
Atkinson, Anthony P	P1-I-78
Atrsaei, Arash	P2-A-1
Atzori, Paola Aubertin-Leheudre,	P2-T-155
Mylène	P2-C-14, P2-C-15
Audo, Isabelle Avanzino, Laura	P1-X-185
Avdiiziii0, Lduid	P1-Q-130, P2-E-35, P2-Q-144, P3-A-1, P3-Q-135, P3-W-174
Avellar, Leticia M	P3-H-69
Azat, Anvar	P3-B-9
Azzi, Nametala M	P2-H-66
Babany, Florence	P1-L-97
Babel, Marie	P3-P-122
Babic, Jan	P2-V-160, P3-V-162
Bach, Margit M	P1-I-75, P3-I-75
Bachelard-Serra, Mathilde	P2-X-182
Bachta, Wael	P2-V-158, P3-V-162
Baciu, Monica	P1-G-48, P3-Q-140
Bacon, Catherine Babat Votam	P1-N-108, P3-C-17 P3-N-114, P3-V-160
Bahat, Yotam Bailey, Caitlin	P1-I-79
Bailey, Harry G	P2-H-54
Baker, Mark	P1-Q-151
Baker, Tyler P	P1-H-70, P3-H-54
Balendra, Nilanthy	P3-H-61
Baltzopoulos, Vasilios	P2-N-104, P3-V-168
Bandinelli, Stefania	S.6ii
Bang, Corinna Bannwart, Mathias	P1-C-16 P2-0-124
Bao, Tian	P1-K-92, P2-K-94
Bar Haim, Simona	0.4.v, 0.6.viii
Barajas, Jordan	P3-Q-125
Baranton, Konogan	P2-C-12
Barbado, Maud	P2-W-178
Barbera, Emanuele	P1-W-169
Barbera, Michele	P1-W-169
Barbera, Nicolo Barbier, Eranck	P1-W-169 P3-D-28
Barbier, Franck Barbieri, Fabio A	P1-G-46, P1-Q-129,
barbien, rabio n	P1-Q-147, P2-C-20,
	P2-N-112, P2-Q-149,
	P2-V-157, P3-N-102
Barbieri, Ricardo A	P2-V-157
Barbosa, Egberto R	P2-Q-150
Barbu-Roth, Marianne	S.13i
Barcellos, Igor	P1-C-16
Barclift, Amanda D	P2-G-51, P2-N-111, P2-N-113
Barela, Ana M	P1-J-83, P1-Q-128, P2-Q-132, P3-D-23
Barela, José A	P1-J-83, P1-Q-128, P2-Q-132, P3-D-23
Bargiotas, Ioannis	P2-H-55
Barkhof, Frederik	P1-0-123
Barnett-Cowan,	P3-Y-188
Michael Barnier Isabelle	Р2-К-88
Barnier, Isabelle	12-11-00

NAME	POSTER NUMBER
Baron, Ralf	P1-C-16
Barreau, Maude	P3-H-55
Barrett, Cody	P1-H-60
Barthélemy, Dorothy	P1-X-187, P2-H-67
Bartsch, Thorsten	P1-C-16
Bastos, Alexandre V Batcir, Shani	P2-Q-134 P2-N-106, P3-K-85,
Datcii, Silalii	P3-N-112
Baten, Chris	P2-W-170
Bates, Alex	P3-N-118
Batista, Alana X	P2-Q-150
Batistela, Rosangela A	P1-V-163, P3-H-64
Batten, Isabella	P3-F-40
Baudry, Stéphane	P3-V-159
Baumann, Christian	P2-Q-145
Baweja, Harsimran S	P3-W-173
Baxter, Brittany A	0.5.v
Bayer, Sara	P2-0-124
Bayot, Madli Baara Bichard	P2-Q-133, P3-Q-126
Beare, Richard	P3-C-15 P1_G_47
Beauchamp, Mark Beauchet, Olivier	P1-G-47 0.2.vi
Beaudette, Shawn M	P1-S-154
Becker, Clemens	P1-C-24, P1-M-98,
beener, erennens	P1-W-175, P2-M-98,
	P2-W-176, P3-C-18,
	P3-N-115
Becktepe, Jos	P1-C-16
Bécu, Marcia	P2-C-12
Bedo, Bruno S	P1-V-163
Beek, Peter J	P3-G-45
Beggs, Clive Bekius, Annike	P2-C-17 0.5.i
Bekkers, Esther M	P3-A-1
Belala, Nacera	P2-M-98
Belanger, Marc	P2-C-15
Belém, Juliane S	P2-C-16
Belhacel, Elise	P1-W-177
Bellicha, Angélina J	P2-V-158, P3-V-162
Belluscio, Valeria	P2-E-29, P3-W-171
Beltran, Jose D	P2-N-109
Ben Gal, Oran	P2-W-172
Ben Porat, Tali	P1-C-17
Ben-Gal, Oran	P1-W-170
Ben-Shahar, Ohad	0.6.viii
Bent, Leah R	0.3.vii, 0.3.viii, P1-S-154 P2-V-165, P3-V-167
Beretta, Victor S	P1-Q-129, P2-E-39,
	P2-Q-137, P3-Q-148
Berg, Daniela	P1-C-16, P2-Q-140,
	P2-Q-142, P3-C-14
Bergamini, Elena	P2-E-29, P3-W-171
Bergeest, Lu M	P1-C-16
Bergh, Sverre	P3-C-21
Berglund, Lars	P1-F-41
Bergmann, Jeannine	P2-W-171
Bergmann, Philipp	P1-C-16
Bergquist, Ronny	P1-M-98, P1-W-175, P2-W-176
Bernad-Elazari, Hagar	P1-Q-142, P2-L-95
Bernard, Bryan	P2-H-68, P3-H-67
Bernard-Demanze, Laurence	P2-X-182
Bernard-Elazari,	P3-E-32
Hagar	P2 (12
Bernardin, Delphine	P2-C-12
	P1-I-79, P1-I-80, P2-L-97
Berry-Kravis, Elizabeth Berryman, Nicolas	P3-Q-139 0.6.v

NAME	POSTER NUMBER
Best, Krista	Р1-В-3
Betelli, Marina T	P1-W-171, P2-B-10,
	P3-N-100
Betz, Ulrich	0.5.iv
Beurskens, Anne	P2-B-7
Beuttler, Richard C	P1-I-76, P3-I-76
Beydoun, Talal	P3-C-13
Bhargava, Sahya	P2-H-63
Bhatt, Tanvi S	S.3ii, S.11i, O.2.v, p1 n 105 p1 n 119
	P1-N-105, P1-N-118, P2-B-3, P3-B-3
Bherer, Louis	0.6.v
Bianco, Lorenzo	P1-N-110, P2-N-117,
biunco, corenzo	P3-K-89
Bigelow, Kimberly E	P1-N-116
Bissas, Athanassios	P2-C-17
Blackinton, Mary	P1-0-122
Blake, Butler	0.6.iii
Blanckaert, lan	P1-0-123
Blevins, Victoria A	P1-V-165
Bloem, Bastiaan R	0.1.vi, P1-E-37, P3-A-1,
	P3-Q-135
Blouin, Jean	0.3.vi, P1-C-22, P1-E-33,
	P1-V-160
Blumen, Helena	P3-C-15
Bluteau, Catherine	P2-V-166
Bocarde, Larissa	P2-C-16
Bogen, Bård E	P1-C-12, P2-H-56
Bohnen, Nicolaas I	0.1.i, P1-E-34, P1-Q-132,
	P2-E-32, P2-E-36,
Dalass Duadau	P3-Q-124
Boley, Braden	P1-V-157
Bolliger, Marc	P2-0-124
Bolton, David	0.6.iii
Bommarito, Giulia	P2-E-35
Bonassi, Gaia	P1-Q-130, P2-E-35,
Bond, Rebecca	P2-Q-144 P2-G-49
Bone, Mackenzie D	P2-B-4
Bong, Sistania	0.4.vi
Bonnet, Cedrick T	P3-V-159
Boocock, Mark	P2-K-91
Boonen, Annelies	P3-D-27
Boonsinsukh, Rumpa	P2-0-125
Boonstra,	P3-H-74
Annemarijke	
Borel, Liliane	P2-X-182
Boroomand-Tehrani,	P3-G-44
Amir	
Borrelli, James R	P3-W-172
Borroni, Barbara	P1-C-16
Bosquet, Laurent	0.6.v
Bosson, Jean-Luc	P2-W-178
Botta, Alessandro	P1-Q-130, P2-Q-144
Bouça-Machado,	P1-C-16
Raquel	
Boulton, Elisabeth	P1-C-24, P2-F-42, P3-C-1
Boulton, Hayley	P2-G-52
Bouman, Daniëlle	P3-G-45
Bourbonnais, Daniel	P3-U-156
Bourgaize, Sheryl M	P1-V-158
Bourke, Nollaig	P3-F-40
Bouyer, Laurent	P1-B-3, P3-E-30,
	P3-Q-128
Bovim, Lars Peder	P2-H-56
Brach, Jennifer	P2-H-53
Brad, Manor	P3-Q-142
Brandes, Mirko	P2-M-99
Brandt, Thomas	P3-G-50
Braquet, Aurore B	P2-Q-133
Brar, Harshan	P3-W-173

NAME	POSTER NUMBER
Bras, Chloé	P1-0-123
Brauer, Sandra G	0.1.v, P1-H-64, P3-Q-127
Braun, Susy	P2-B-7
Breau, Becky	P1-M-100, P2-M-99
Breedlove, Katherine M	P1-Q-131
Breitkopf, Katharina	P3-G-50
Bremmer, Frank Breslin, Monique	P1-H-57 P1-C-18, P2-F-40, P3-C-15
Brette, Romain	P2-N-119
Briggs, Robert	P3-L-93
Brittain, John-Stuart	S.14i
Brodie, Matthew A	S.11iii, P3-C-20, P3-F-43
Bromley, Katie	P3-I-78
Bronstein, Adolfo M	P1-H-55, P2-Q-143, P2-X-184, P3-G-46, P3-G-48
Bronte-Stewart,	S.9ii
Helen Brooke Phillion	P3_H_61
Brooke, Phillion Brooks, Dina	Р3-H-61 Р2-H-57
Brooks, Jack	P1-V-156
Brown, Elise C	P3-W-173
Brown, Stephen H	P1-S-154
Brozgol, Marina	P1-0-121, P1-W-176, P2-L-95, P2-Q-136, P2-W-175
Bruijn, Sjoerd M	0.5.iii, P1-D-29, P2-H-62, P2-Q-149, P3-B-4,
Brunner Poinald	P3-H-66
Brunner, Reinald Bryk, Kelsey	P2-J-85 P1-G-45
Bucci, Maria Pia	P1-X-185, P2-T-155,
	P3-C-13
Buchman, Aron S	P1-W-174, P2-W-174, P2-W-175
Buck, Christoph	P2-M-99
Buckley, Christopher	P1-0-120
Buckley, Thomas A	P1-G-45, P1-Q-131, P2-R-154, P3-R-150
Bueno, Jair W	P3-S-154
Bugnariu, Nicoleta	S.1i, 0.5.vi, P3-N-101
Buhler, Marco A	S.1iii
Buizer, Annemieke	0.5.i, P1-0-123
Buker, Nurullah Burma, Joel S	P3-S-155 P2-V-163
Burma, Joel S Burn, David	P2-V-163 P1-E-40, P2-Q-151
Burn, David Button, Kate	P1-E-40, P2-Q-151 P2-M-103
Buurke, Tom	P2-M-105 P1-B-10, P2-B-5, P2-B-6,
	P3-B-5
Buurke, Jaap	P2-W-170
Caccese, Jaclyn B	P1-G-45, P2-V-159
Caçola, Priscila M	P1-J-86
Cakiroglu, Mehmet A	P1-W-179, P2-D-26
Caldani, Simona	P1-X-185, P2-T-155
Callisaya, Michele L	S.5ii, O.2.ii, P1-C-18, P2-F-40, P3-C-15
Camargos, Janine Carvalho V	РЗ-Н-69
Camernik, Jernej	P2-V-160, P3-V-162
Camicioli, Richard	P1-F-43
Campbell, Benjamin	P3-F-40
Campos, Jennifer L	S.10ii, P3-G-44
Campos, Joseph J	S.13iii P3_0_133
Canning, Colleen G Cano Porras, Desiderio	P3-Q-133 S.1ii, O.4.ii, P2-N-107, P2-W-172
	P3-0-119
Carapellotti Anna M	
Carapellotti, Anna M Carender, Wendy J	P1-K-92
Carapellotti, Anna M Carender, Wendy J Carey, Alyssa	P1-K-92 0.3.iii

NAME	POSTER NUMBER
Carlson-Kuhta,	0.1.iv, P2-Q-148, P3-A-2,
Patricia	P3-Q-129, P3-Q-134
Carns, Danielle	P3-Q-139
Carpenter, Mark G	0.3.vi, 0.6.vi, P1-B-11, P1-C-22, P1-E-37, P1-G- 47, P1-G-50, P1-Q-129, P1-V-160, P2-G-45, P2-H-62, P2-X-183, P3-G-51, P3-H-71
Carraurer, Claire	P1-J-84
Casali, Carlo	P3-Q-144
Casana-Eslava, Raul V	P2-N-104
Cassady, Kaitlin	S.15i
Castro, Patricia	P1-H-55, P2-Q-143, P2-X- 184, P3-G-46, P3-G-48
Catino, Luigi	P3-B-6, P3-H-63
Cederbaum, Jesse	P3-Q-135
Celestino, Melissa L	P3-D-23
Cereatti, Andrea	P3-A-1
Cerulli, Cecilia	P2-E-35
Ceulemans, Berten	P1-J-87, P3-J-82
Chabaud, Pascal	P1-N-111
Chabrol, Brigitte	P3-J-81
Cham, Rakié	P2-K-94
Chambers, April J	P2-K-94
Chan, Katherine	P1-H-61, P1-H-67
Chan, Kim L	P1-N-104
Chang, Chao-Chin	P2-D-25
Chase, Karen	P3-V-163
Chatard, Hortense	P3-C-13
Chavet, Pascale	P1-E-33, P3-V-161
Chayasit, Pornprom	P2-0-125
Chayat, Yehudith	P2-N-105
Chechelnitskaya, Serafima	Р2-Н-72
Chen, Chih-Hung	P2-H-75, P3-H-60
Chen, Joyce L	Р2-Н-57, Р3-В-7
Cheng, Kenneth C	P1-N-104
Cheng, M. Samuel	P1-0-122
Chesnutt, James C	P2-H-69, P3-Y-189
Cheung, Winnie	P3-N-106
Cheze, Laurence	P1-N-111
Chheda, Shweta	P1-I-76, P3-I-76
Chiari, Lorenzo	S.6ii, P2-N-108
Chipon, Emilie Cho, HyeYoung	P2-W-178 P1-G-46, P2-N-112,
., .	P3-H-56, P3-N-102 P1-F-42, P3-N-117
Choi, Jinseong Chow, Jessica	P1-F-42, P3-N-117 P3-F-43
Chrispin, Anne	P1-G-48, P3-Q-140
Christ, Sharon	P3-H-56
Christie, Anita	S.15iii
Chua, Romeo	0.6.vi
Chung, Jae Woo	0.1.vii
Chung, Kathy	0.1.iii
Cignetti, Fabien	P3-J-81
Cinelli, Michael E	S.4ii, P1-I-81, P1-M-100, P1-V-157, P1-V-158, P1-V-162, P2-D-23, P2-V-167
Clarac, Emmanuelle	P1-G-48, P2-W-178, P3-Q-140
Clark, Mindie	P1-G-49, P2-H-69
Clark, David J	P1-Q-137
Claus, Andrew	P3-J-83
Clemson, Lindy	0.2.vii
	0.6.vi, P1-E-37, P2-X-183,
Cleworth, Taylor W	P3-G-51
Cleworth, Taylor W Clint, Hansen	P3-Q-126

NAME

POSTER NUMBER

NAME

NAME	POSTER NUMBER
Cochran, Sean M	P2-G-51, P2-N-111, P2-N-113, P3-N-113
Cocks, Adam	P2-G-44
Coebergh, Jan A	P2-Q-143
Coelho, Daniel B	P1-W-171, P2-B-10, P2-H-66, P2-Q-134, P2-Q-150, P3-M-99, P3-N-100, P3-S-154
Cofré Lizama, L. Eduardo	P2-Q-135
Cohen, Maya	P1-W-170, P2-W-172
Cohen, Michael X	0.4.iv
Cohen, Oren S Cohen, Yaniv	P1-L-96 P2-N-105
Coker, Elizabeth R	P2-V-161
Cole, David M	0.6.iii
Cole, Michael	0.1.v
Collett, Johnny	P2-H-78
Collin, Harry Conceição, Nubia R	P1-A-1
Conradsson, David	P2-E-39, P2-Q-137 P1-B-5
Conte, Carmela	P3-Q-144
Coolen, Bert	Р1-К-89
Cope, Othello	P1-C-19
Copeland, Paige Coppens, Milou	P2-V-163 P1-G-50, P3-Q-146
Cornejo Thumm,	P1-0-121, P2-W-175,
Pablo	P3-Q-142
Cornelisse, Luca E	РЗ-Н-66
Corrà, Marta F Cosentino, Carola	P1-C-16 P2-Q-144
Cossar, John	P1-Q-152
Costa, Andréia Abud da Silva	P1-C-13
Costamagna, Eleonora	P3-N-118
Coulter, Laura	P1-B-4
Couvrat, Alix Cowie, Dorothy	P1-J-84 P1-I-78
Craig, Chesney E	S.14i, P1-N-117
Crane, Benjamin	P1-H-54
Crenshaw, Jeremy R Crétual, Armel	P2-R-154 P1-I-81, P2-V-167,
Critelli, Kyle	P2-W-179, P3-P-122 P1-H-54
Crosby, Lucas D	P2-H-57, P3-B-7
Cruz, Caio F	P2-Q-132
Cruz, Karoliny L	P2-C-16
Cuddeford, Tyler Cui, Chuyi	0.3.iii P2-N-112, P3-N-102
Curran, Thomas	P2-W-175
Curt, Armin	P2-0-124
Curtze, Carolin	P1-A-2, P1-W-173, P2-H-58, P2-Q-148, P3-A-2, P3-Q-134
Curylo, Marta	P3-H-59
Cusumano, Joseph P Cyr, Jean-Philippe	0.5.ii, P3-C-16, P3-R-151 P1-V-159
Daffertshofer, Andreas	0.5.i, P1-I-75, P3-E-39, P3-I-75
Dagan, Moria	P1-W-176, P2-L-95, P3-Q-142
Dahl, Anne Eitrem Dai, Shenhao	P1-0-124 P1-G-48, P2-W-178, P3-Q-140
Dalton, Brian H	P2-V-163
Dannenbaum, Elizabeth	P3-W-176
Elizabeth Dany, Lionel	P3-V-161
Dauer, William T	0.1.i
Davalli, Angelo	P2-N-108

ToC 72

P1-E-31 Decker, Julian 0.3.ii DelDonno, Sophie P3-B-3 P1-J-87 Di Bacco, Vincenzo E P1-W-172, P3-B-8 Diamond-Ouellette, P1-B-3 0.5.iv Dingwell, Jonathan B 0.5.ii, P3-C-16, P3-R-151 Dobbels, Bieke P3-L-93

POSTER NUMBER 0.1.v P1-E-30, P2-M-103 P3-V-159 P3-N-106 P1-G-48, P3-Q-140 P2-W-175 P2-H-78, P3-N-118 0.6.vii, P1-Q-132, P1-Q-148, P2-Q-142, P3-Q-143 S.2iii, P3-W-175 0.5.vii, P3-P-123 P1-K-95, P2-W-173 S.3iii, P1-B-9 P2-Q-134 P3-E-31 P2-Q-147, P3-G-50, P3-0-136 P2-Q-133 S.8i, P1-A-1, P1-C-19, P1-0-120, P1-P-127, P2-F-41, P3-A-1, P3-W-174 S.5iv, 0.2.vii, P1-N-106, P3-F-43 P2-H-78 P2-N-109 P3-A-1, P3-W-174 P2-T-155 P2-Q-133 P1-N-110, P3-K-89 P1-0-137 P1-B-10, P2-B-5, P2-B-6, P3-B-5, P3-H-74 P3-Q-125 P1-G-48, P3-Q-140 P2-G-46 P2-0-142 P2-D-28 P1-J-85, P2-J-83, P3-J-83 P3-H-57 0.3.v, P1-Q-133, P2-X-189, P3-X-185 P3-Q-147 P1-J-84 P2-X-186 P1-Q-131, P3-R-150 0.1.vi, P1-Q-134, P1-Q-135, P2-Q-135 P1-Y-191, P2-K-89, P3-K-87 P3-X-187 P1-C-14, P2-N-116 P2-H-59, P3-H-58 0.5.i, P1-I-75, P3-E-39, P3-I-75 P1-E-35 P1-Q-128, P2-Q-132 P1-W-170

NAME	POSTER NUMBER
dos Santos, Fernando V	P2-V-159
Dotan-Marom, Yael	P1-L-96
Dotchin, Catherine	P1-A-1
Doumas, Mihalis	P1-B-4, P3-J-84, P3-0-119
Downey, Rachel I	0.6.v
Downey, Robert	P2-H-63
Draicchio, Francesco	P3-Q-144
Drake, Janessa Drees, Philipp	P1-V-164 0.5.iv
Dreillard, Tipahaine	P1-J-84
Dreneva, Anna	P1-H-56
Drey, Michael	P1-C-16
Duarte Caetano, Maria Joana	P3-Q-133
DuBois, Sam L	P1-V-165
Dubreuil Vall, Laura	P1-G-52
Duclos, Cyril	P3-H-55, P3-K-86,
	P3-Q-128, P3-U-156
Duffy, Donna M	P1-V-165, P3-H-65
Dujardin, Kathy	P2-Q-133
Duncan, Carolyn A	P2-B-8
Duncan, Gordon	P1-E-40
Dupuy, Emma G Dusana, Shamali	0.3.ii P3_R_3
Dusane, Shamali Dutta, Tilak	P3-B-3 P2-K-90, P2-N-109
Duysens, Jacques	P1-W-171, P2-B-10
Dyer, Adam H	P3-F-40
Easthope, Christopher	P2-H-79, P2-0-124
Eckardt, Nils	РЗ-Н-70
Edgerton, V. Reggie	0.4.viii
Edo, Masahiro	P2-D-24
Edwards, Amy	P2-Q-143, P2-X-184
Edwards, Karen L	0.1.iii
Edwards, Mark J	P2-Q-143 P3 N 106
Egbert, Anna C Eggenberger, Patrick	P3-N-106 S.2iii
Eggenberger, Patrick Ehgoetz Martens, Kaylena A	0.6.ii, P2-E-30
Ehlers, Christin	P1-C-16
El Gohary, Mahmoud	P2-Q-148, P3-A-2
El Koulali, Karim	P3-M-98
Elabd, Karam	P1-N-113
El-Gohary, Mahmoud	P1-A-2, P3-Q-134
Elion, Orit	P3-V-160
Elkana, Odelia	P1-C-17
Ellmers, Toby	S.7iii, P1-Y-190, P2-G-44
Elshehabi, Morad	P1-C-16, P3-C-14
Elvan, Ata	P1-W-179 P1 W 179 P2 E 22
Eng, Janice J	P1-W-178, P2-E-33, P3-E-35
Engel, David	P1-H-57
Ephraty, Lilach	P1-L-96
Escalona, Manuel J	P3-U-156
Escalona Castillo, Manuel Jose	РЗ-Н-55
Eschelmuller, Gregg L	0.3.vi, P1-C-22, P1-V-160
Eskofier, Bjoern M	0.1.viii, P1-B-7, P3-M-95
EsmaeiliMahani, Vahid	P3-Q-128
Espy, Debbie	P1-N-110, P2-N-117, P3-K-89
Esser, Patrick	P2-H-78
Eyal, Shlomit	P3-N-109
Fabre, Marie	P1-E-33, P3-V-161
Factor, Stewart	0.4.vi
C 1 1 1 1 1 T	P2-G-51, P2-N-111,
Fairbrother, Jeffrey I	
	P2-N-113
Fairbrother, Jeffrey T Fangman, Annie Farahmandi, Susan	P2-N-113 P1-Q-133, P2-X-189 P1-C-16

NAME

POSTER NUMBER

Davids, Keith Davies, Jennifer L Davin, Tanguy Davis, Jennifer C Davoine, Patrice Dawe, Robert J Dawes, Helen D'Cruz, Nicholas

de Bruin, Eling De Groote, Friedl de Jong, L.A.F. de Kam, Digna de Lima-Pardini, Andrea de Rond, Veerle Debener, Stefan

Decker, Leslie M Defebvre, Luc Del Din, Silvia

Delbaere, Kim

Delextrat, Anne Delfi, Ghazaleh Della Croce, Ugo Delorme, Richard Delval, Arnaud DeMarco, John DeMark, Lou den Otter, Rob

Denney, Linda Desloovere, Kaat Detante, Olivier Detillon, Nieck Deuschl, Günther DeVita, Paul Dewar, Rosalee Dewolf, Arthur H Gabriel Dibble, Lee

Dibble, Leland E Didier, Briskmann Diers, Helmut Dietrich, Haike DiFabio, Melissa S Dijkstra, Bauke W

Divine, Alison

Doi, Takehiko Dollack, Felix Dominici, Nadia

Domire, Zac Doná, Flávia Doniger, Glen Donoghue, Orna A

POSTER NUMBER NAME Faraji, Salman P2-H-79 Fassini, Priscila P1-C-20 Fawver, Bradley J P1-G-49 Fedoriuk, Alison P2-H-63 Fefferman, Marie P1-I-80 Feillet, François P3-Q-141 Feld, Jody A P2-G-48, P3-G-47 P2-G-51, P2-N-111, Felsberg, Danielle T P2-N-113, P3-N-113 Feng, Chi Kuang P2-D-25 P3-Q-149 Feng, Tao Fernandes, Julia A P2-C-16 Ferraz, Henrique B P1-Q-128, P2-Q-132 Ferriolli, Eduardo P1-C-20, P2-C-18 Ferris, Daniel P S.10i Fettrow, Tyler D P1-H-58 P3-D-27 Fevs. Peter Fielding, Anna E P1-Q-152, P1-Y-190, P2-N-114 Figueroa-Padilla, P2-X-188 Ignacio Finley, James M S.10iii, P3-Q-132 0.3.v, P1-G-49, P1-Q-133, Fino, Peter C P1-W-173, P2-H-69, P3-V-165, P3-Y-189 Flori, Lorenzo P3-Q-144 Fischer-Barnicol, P1-K-88 Bettina Fiset, Félix P1-H-59 Fish, Emma R P1-W-183 Fisher, Beth E S.10iii Fitzpatrick, Richard C P3-M-98 Fling, Brett W S.15iv, P1-V-168, P2-H-70, P2-V-168, P3-D-24 P3-M-98 Florent, Guillaume Fok, Kai-Lon P1-K-90 Fontan, Aurelie P3-J-81 Forbes, Patrick A 0.5.iii Forczek, Wanda P3-H-59 Foreman, K. B P3-Q-147 P3-W-182 Forero, Juan Forma, Vincent S.13i P3-V-161 Fornerone, Théo P3-H-56 Forster, Anna K Foster, Hayley P3-I-78 S.12iii, P2-H-54, P2-Q-Foster, Richard J 131, P3-N-116, P3-V-168 Fox, Emily J P1-0-137 Fraczek, Barbara P3-H-59 Francksen, Natasha C P2-N-104 Franke, Andre P1-C-16 Franklin, Zoe S.14i Franks, Melissa P3-H-56 Franz, Jason R P2-D-28 Franzén, Erika 0.1.ii, P1-M-99, P3-M-96 Fraser, Sarah P1-E-39 Fregoni, Andrea P1-W-169 Freire Junior, Renato C P2-C-18 Freire Júnior, Renato C P2-C-16, P1-C-20 Freslier, Marie P2-J-85 Friederich, Anja P1-C-16 Friedlander, Yechiel 0.2.iii P3-H-69 Frizera, Anselmo Fuentealba, P3-G-46 Constanza S.9iii, P2-K-87 Fuentes, Rómulo F Fuiii, Shintaro P1-0-143 Fujino, Tsutomu P3-D-26 Fukuda, Yuto P1-C-15 Fuller, David D P1-Q-137

NAME	POSTER NUMBER
Funabiki, Yasuko	Р2-Н-76
Fung, Joyce	S.1iv, P2-H-74, P3-W-176
Furman, Joseph	P1-E-38
Furman, Michael	P3-G-48
Furuna, Taketo	Р1-В-6, Р1-Н-73
Gage, William H	P1-V-164, P1-W-172,
	P3-B-8
Gagnon, Dany H	P3-K-86, P3-U-156
Galna, Brook	P1-E-40, P1-G-51, P2-F-
	41, P2-Q-131, P2-Q-151, P2-Q-153, P3-F-41
Galperin, Ira	P1-Q-142, P3-A-1
Galperin, Irina	P2-Q-136
Gam, Arnon	P1-R-153
Ganz, Natalie	P1-C-17, P1-W-174,
	P2-W-174, P3-0-120
Garg, Saurabh	P1-E-37
Garner, Brian	P1-H-60
Gaspar, Epro	S.11ii
Gassner, Heiko	0.1.viii, P3-M-95
Gazit, Eran	0.6.i, P1-W-174,
	P2-Q-136, P2-W-174,
	P2-W-175, P2-W-180,
	P3-G-49, P3-O-120,
Geerse, Daphne J	P3-Q-142 0.2.viii, P1-H-71, P1-K-89
Gehrig, Ashleigh	P2-J-84
Geisler, Corinna	P1-C-16
Gennaro, Federico	S.2iii
Georgiades, Matthew	0.6.ii
Gerasimenko, Yury	0.4.viii
Geritz, Johanna	P1-C-16
Geurts, Alexander	S.3iv, P1-K-95, P3-Q-146
Gholami, Mohsen	P1-W-178
Giannouli, Eleftheria	P2-N-115
Gibney, James	P3-F-40
Giboin, Louis-Solal	P1-B-8
Giedraitis, Vilmantas	P1-F-41
Gierthmühlen, Janne	P1-C-16
Gil, Efrat	P2-N-105
Giladi, Nir	0.6.i, P1-W-176, P2-L-95,
	P2-Q-136, P3-A-1, P3-N-
	109, P3-Q-135, P3-Q-142, P3-W-174
Gilat, Moran	P1-Q-134, P1-Q-135,
Shay morun	P2-Q-135
Gill, Niamh	P1-D-25
Gimmon, Yoav	P2-N-106
Ginis, Pieter	0.1.vi, 0.6.vii, P1-Q-148,
	P2-Q-142, P3-Q-143,
	P3-W-174
Ginzel, Elizabeth	0.5.vi
Giraldez-Fernandez,	P2-X-188
María E	D1 0 145
Gisiger, Thomas	P1-Q-145
Gjesdal, Beate E	P2-H-56
Gobbi, Lilian T	P1-G-47, P1-Q-129, P1-Q-
	144, P2-C-20, P2-E-39, P2-Q-137, P3-Q-148,
Goble, Daniel J	P3-H-65, P3-W-173
Godbout, Andrew	P3-H-54
Godefroy, Olivier	0.6.iv
	S.8ii, P1-K-93
	,
Godfrey, Alan	P2-H-60
Godfrey, Alan Godoi, Daniela	P2-H-60 P2-H-68, P3-H-67
Godfrey, Alan Godoi, Daniela Goldman, Jennifer G	P2-H-68, P3-H-67
Godfrey, Alan Godoi, Daniela	
Godfrey, Alan Godoi, Daniela Goldman, Jennifer G Goodworth, Adam D	P2-H-68, P3-H-67 P1-H-60, P3-X-186
Godfrey, Alan Godoi, Daniela Goldman, Jennifer G Goodworth, Adam D	P2-H-68, P3-H-67 P1-H-60, P3-X-186 P1-W-175, P2-W-176,
Godfrey, Alan Godoi, Daniela Goldman, Jennifer G Goodworth, Adam D Gordt, Katharina	P2-H-68, P3-H-67 P1-H-60, P3-X-186 P1-W-175, P2-W-176, P3-C-18

NAME	POSTER NUMBER
Gotsis, Marientina	S.10iii
Gottlieb, Uri	P1-R-153
Gottwald, Janna M	P1-I-78
Goyette, Michel Grabke, Emerson P	P3-U-156 P1-K-90
Grahn, Jessica	P2-H-57, P3-B-7
Granat, Malcolm	P3-N-118
Granbo, Randi	P2-F-42
Granert, Oliver	P1-C-16
Grant-Beuttler, Marybeth	P1-I-76, P3-I-76
Gray, Ganit	P1-Q-136
aray, William K	P1-A-1
Freeves, Julie	P1-D-25 P2-C-17
Gregg, Emily L Gregor, Sarah E	P2-M-102, P2-Q-138
Grenet, David	P1-H-58
Gritsenko, Valeriya	P3-D-23
iroen, B.E.	P1-K-95
Gruber, Markus	P1-B-8, P3-V-158
Frunstein, Ronald	0.6.ii, P2-E-30
iuan, Joseph	P3-Q-139
iuan, Yu	P1-P-127
Guinamard, Marine	P1-N-111
Sur-Yaish, Nurit	P2-N-105
Gutierrez-Castañeda, Martha F Guuran Onum	P2-X-188
Guven, Onur Gwordor, Michollo	P2-X-184 P2-Q-145
Gwerder, Michelle 1. Gagnon, Dany	P3-H-55
Habib Perez, Olinda D	Р1-Н-61
lackney, Madeleine	0.4.vi
lada, Yasushi	P1-K-91, P1-O-125, P1-U-155, P2-O-128,
	P2-U-156, P3-W-181
Hadad, Amit	P1-W-174, P3-0-120
lafner, Brian J	P1-N-112, P3-N-107
lagio, Shota lagströmer, Maria	P3-B-9 P1-M-99
lakamata, Tomoki	0.2.i, P2-H-61
lalko, Mark A	P3-E-36
Hall, Deborah	P3-Q-139
Hall, Jeremy	P3-W-182
Hallemans, Ann	P1-J-87, P1-X-186,
	P3-J-82, P3-X-187
Haller, Venessa	P1-K-88
Halliday, Glenda	0.6.ii, P2-E-30
lalmy, Bethany	P3-E-37 P1-F-41
łalvorsen, Kjartan łammerbeck, Ulrike	P2-B-11
Hanawa, Hiroki	P3-D-26
Handelzalts, Shirley	S.3i, P1-Q-136, P2-N-110
Handy, Justin	P2-Q-152
lannah, Sally	P1-J-85, P2-J-83
Hansen, Clint	P1-C-16, P1-Q-150, P3-C-14
Hardeman, Lotte	P1-Y-190
Harker, Graham R	P2-L-96
Harlaar, Jaap	0.5.i, P1-0-123
larris, Laurence	S.10ii
Harrison, Rachel	P2-L-95
Hasegawa, Naoya	0.1.iv, P3-Q-129
Haskell, Amanda	P2-Q-152
Hasler, Nadine Hassin-Baer, Sharon	P2-J-85 P1-L-96
Hassin-Baer, Sharon	P1-L-96 P1-Q-143, P2-Q-139
Hasui Naruhito	1 1 4 173,12 4 133
	P3-H-56
Hasui, Naruhito Hatala, Samuel Hatton, Anna	P3-H-56 0.1.v

NAME	POSTER NUMBER
Hausdorff, Jeffrey M	S.6iii, O.6.i, P1-C-17, P1-0-121, P1-Q-142, P1-W-174, P1-W-176, P2-L-95, P2-Q-131, P2-Q-136, P2-W-174, P2-W-175, P2-W-180, P3-A-1, P3-E-32, P3-G-49, P3-N-109, P3-Q-120, P3-Q-135, P3-Q-142, P3-Q-145, P3-W-174
Hawkins, Kelly	P1-Q-137
Hayashi, Hisamitsu	P3-X-184
Hayashi, Yuki	P3-K-92
He, Minxuan	S.13iii
Hebert, Jacqueline	P3-W-182
Heger, Tanja Heiko, Gassner	P2-Q-140 P1-B-7
Heinzel, Sebastian	P1-C-16, P2-Q-140
Heitmann, Kjell R	0.5.iv
Helbostad, Jorunn L	P1-C-24, P1-M-98, P1-W- 175, P2-C-19, P2-F-42, P2-W-176, P3-C-18
Heller, Maren K	P1-C-16
Hemler, Sarah L	0.5.viii
Hennig, Ewld Herget, Georg	0.1.v P2-B-9
Herman, Talia	P2-L-95, P3-Q-135,
,	P3-Q-142
Herman- Feinstein, Talia	P1-W-176
Herssens, Nolan	P1-X-186, P3-X-187
Hettich, Georg	P3-V-158
Higa, Yasutaka	P2-Q-139
Higgins, Lauren Q	P2-G-51, P2-N-111, P2-N-113, P3-N-113
Higgins, Simon Higuchi, Takahiro	P2-M-100 0.2.i, P1-H-69, P1-H-73, P2-H-61,P2-H-65
Hill, Allen	Р1-D-27, Р1-Н-62, Р3-Н-62
Hill, Keith	P1-Y-191, P2-K-89, P3-K-87
Hillel, Inbar	P3-A-1, P3-Q-135, P3-W-174
Hiller, Amie	0.1.iii
Hinton, Dorelle C	P1-B-5, P3-E-30
Hirata, Keisuke	P3-D-26
Hiyoshi, Ryota Hoang, Jean-Yves	0.2.i P3-V-159
Hobert, Markus A	P1-C-16, P2-Q-140,
	P3-Q-143
Hochner, Hagit	0.2.iii
Hofmann, Marc	P1-C-16
Hokkirigawa, Kazuo	P1-W-181
Holland, Shauna Hollands, Kristen L	P2-Q-153 P2-B-11, P2-O-125,
	P3-B-8
Hollands, Mark A	S.12iv, P2-N-104, P2-O- 125, P2-O-127, P3-N-116, P3-V-168
Hollands, Kristen	P1-D-25
Hollandsworth, R.	P1-I-76, P3-I-76
Caprice Holmes leff	P1-Y-191, P2-K-89
Holmes, Jeff Holmes, Paul	S.14i
Hommel, Marc	P1-G-48, P3-Q-140
Honda, Keita	P1-Q-138, P2-H-71
Honoré, Jacques	P2-X-182
Hoozemans, Marco J	P2-N-123, P3-C-22

NAME	POSTER NUMBER
Horak, Fay B	S.6iv, O.1.iii, O.1.iv, P1-A-2, P1-K-93, P2-L-96, P2-Q- 148, P3-A-2, P3-Q-129,
Horna Chi linn	P3-Q-134
Horng, Shi-Jinn Hortobagyi, Tibor	P2-D-25 S.14.iv, S.15ii, P1-B-10, P1-C-13, P2-C-20, P2-D-28
Hoshi, Fumihiko	P2-H-65
Houston, David J	P1-K-90
Howe, Erika	0.3.viii
Howell, David R	P2-R-154
Howell, Kerry	P1-F-43
Hsu, Wei-Chun	P2-D-25
Hsueh, Yu-Chu	РЗ-Н-60
Hu, Shu-Ching	0.1.iii
Hudson, Andrew	P3-N-104
Huijben, Bas	P3-C-19
Hüllemann, Philipp Hulzinga, Femke	P1-C-16 P1-N-106
Hunt, Grace	P1-Q-133, P3-Q-147,
	P3-X-185
Hunter, Heather M	P1-N-107, P1-0-120
Hunter, Susan W	P1-Y-191, P2-K-89, P3-K-87
Huntley, Andrew H	P1-W-177, P2-D-27, P2-W-169, P3-G-44,
	P3-Q-130
Hunzinger, Katherine J	P1-G-45
Hupfeld, Kathleen Huppert, Doreen	S.15i P3-G-50
Huppert, Theodore	P1-E-38
Hurt, Christopher P	P3-H-70
Huthwelker, Janine	0.5.iv
Ibala, Eunice	P3-V-163
Ibarra, Gerado	P3-G-50
lbitoye, Richard	P2-X-184, P3-G-48
lda, Hirofumi	P1-M-103, P3-V-164
lgarashi, Kenta	Р1-Н-63
Ignasiak, Niklas	P2-0-124, P2-Q-145
ljspeert, Auke J	P2-H-79
llg, Winfried Imaizumi, Luiz Felipe I	P1-Q-139, P3-Q-131 P1-Q-147
Imaizumi, Luiz Felipe I Imaoka, Yu	P1-Q-147 P3-W-175
Imbert, Nicolas	P1-J-84
Imura, Akiko	0.2.i
Inglese, Matilde	P2-E-35
Inglis, J. Timothy	0.3.vi, 0.3.viii, 0.6.vi, P1-C-22, P1-E-37, P1-G-50, P1-V-160
Inkol, Keaton A	P2-P-130
Inness, Elizabeth	S.11iv, P2-W-169, P3-W-179
Inoue, Takahiro	P3-I-80
Intrator, Nathan	P3-0-120
Intzandt, Brittany	0.6.v
Inzelberg, Rivka	S.1ii, O.4.ii, P1-L-96, P2-N-107
lonescu, Anisoara	P1-M-101, P2-A-2
losimuta, Natalia C	P2-C-18
Isaka, Tadao	P3-W-177
Ishii, Hideaki	P1-C-14, P2-N-116
Ishikawa, Kazuo	P2-X-185, P2-W-177, P3-W-183
Islam, Aisha	P2-Q-141
Itou, Kazunari	P1-B-6
Iturralde, Pablo A Ivanenko, Yury	S.3iii S.13ii, P3-H-59
lwata, Hiroyasu	P3-K-92
Iwata, Koki	Р1-Н-73
	P2-H-78
Izadi, Hooshang	

NAME	POSTER NUMBER
Izhar Ahmed, Muhammad	P2-D-25
Izumi, Shin-Ichi	P1-Q-138, P2-H-71
Jacobs, Jesse	0.4.ii, P2-N-107
Jacobsen, Nadine	P3-E-31
Jaeger, Marie	P1-G-48, P3-Q-140
Jagroop, David	P3-G-44
Jahn, Klaus	0.3.i, P1-X-188, P2-W-171
Jaimes, Diego A	P3-Q-148
Jain, Sanjiv	P2-W-181
Janin, Marc	P1-J-84, P1-N-109, P2-V-162, P3-N-105
Jansens, Jeske	P2-V-102, P3-N-105 P2-W-173
Jáuregui-Renaud,	P2-X-188
Kathrine	12 / 100
Jaussaud, Roland	P3-Q-141
Jayakaran, Prasath	P3-I-78
Jayakody, Oshadi	P1-C-18, P2-F-40, P3-C-15
Jeffrey, Erica Rose	P1-H-64
Jehu, Deborah A	P3-N-106
Jeka, John J	P1-H-58, P2-V-159
Jemlich, Björn	P1-C-16
Jiang, Jolin	P3-W-176
Jiang, Xianta	P1-W-178
Jie, Li-Juan	P2-B-7
Jog, Mandar	S.9i, P3-K-91
Johansson, Hanna C	P1-M-99, P3-M-96
Johnson, Andrew	P1-Y-191, P2-K-89, P3-K-87
Johnson, Curtis L	P1-Q-131
Johnson, Kyle J	P2-G-45
Johnston, Adam	P3-H-54
Johnston, Leanne M	P1-J-85, P2-J-83, P2-J-84,
,	P3-J-83
Jones, Richard K	P1-D-25
Jonkers, Ilse	0.5.vii
Jonkman, Nini H	P3-C-19
Jor'dan, Azizah J	P2-F-43, P3-E-32
Joshi, Shawn	P2-H-78
Joubran, Katherin	0.4.v
Jover, Marianne	P3-J-81
Joyce, Jessica	P2-L-97
Juan, Benjamin Jung, Se Hee	P3-V-161 0.1.iv
Juri, Carlos	P2-K-87
K, Christopher	P3-N-113
Kadone, Hideki	P1-K-91, P1-0-125,
Rudone, mucki	P1-U-155, P2-H-59,
	P2-0-128, P2-U-156,
	P3-H-58, P3-W-181
Kal, Elmar	S.7iv, P1-Y-190, P2-G-46
Kalmar, Jayne	P2-D-23
Kalyani, Nadeesha	P1-H-64
Kamachi, Megan	P2-N-109
Kamijo, Fumiko	P2-D-24
Kaminski, Terry	P2-V-161
Kaneko, Naotsugu Kanel, Prabesh	P3-E-33, P3-V-170 0.1.i, P1-E-34, P1-Q-132,
nullei, i labesti	0.1.1, P1-E-34, P1-Q-132, P2-E-32
Kanemura, Naohiko	P3-D-26
Kanner-Furman,	P1-Q-136
Michal	
Karakolis, Thomas	P1-B-3
Karamanidis, Kiros	S.11ii, P3-B-11
Karelin, Alexander	Р1-Н-56, Р2-Н-72,
	P3-H-52
Karelis, Antony	0.6.v
Karim, Helmet	P1-E-38, P2-E-36
Karmali, Faisal	P3-X-186
Karni, Arnon	P2-W-180, P3-Q-145

ToC 74

NAME	POSTER NUMBER	NAME	POSTER NUMBER
Karni, Avi	P3-V-160	Kodama, Kentaro	P1-H-66, P1-V-166
asatkin, Vladimir	P1-H-56, P1-I-82, P2-H-	Koenig, Eberhard	P2-W-171
acki Diago	72, P2-H-73, P3-H-52	Koganezawa, Koichi	P1-H-63
Kaski, Diego	P1-H-55, P2-Q-143, P3-G-48	Kohut-Jackson, Abigail	P1-Q-141
atz, Racheli	P1-0-121	Koizumi, Koh	P2-X-185
(aur, Tanjeev	0.2.v	Kokubun, Takanori	P3-D-26
aurkin, Sergey	P3-R-152, P3-R-153	Komisar, Vicki	S.8iii, P1-N-113, P2-B-8,
autz, Steven A	P1-H-72	· · · , ·	P3-N-103, P3-N-108,
Cawakami, Koji	P1-M-103		P3-W-172
aye, Elizabeth	P1-H-58	Kondo, Yoshitsugu	P2-H-61
(azanski, Meghan E	P3-C-16	König, Matthias	S.11ii
Keijsers, Noel	P1-H-65, P1-K-95,	Konradi, Jürgen	0.5.iv
(ally Valaria E	P2-W-173, P3-U-157 0.1.iii	Kooiman, Vera Koren, Yogev	P3-B-10 0.6.viii
Kelly, Valerie E Kennefick, Michael	P2-V-163	Kouba, Lukas	P2-B-9
Kennelly, Sean	P3-F-40	Kowalewski, Victoria	P3-N-101
Kenney, Laurence	P3-N-118	Koyake, Aki	P1-H-69
Kenny, Rose A	P3-L-93	Kozuka, Naoki	P2-I-81, P2-N-122,
Keren, Ofer	P2-N-107	nozana) naoni	P3-I-80
Kerkman, Jennifer	0.5.i	Kragting, Bram	P2-G-46
Kerkmann, Laura	P1-C-16	Kramer, Andreas	P1-B-8
Kerkum, Yvette	P2-W-173	Krasovsky, Tal	P2-G-47
Kerr, Andrew	P3-V-163	Krause, Katharina	P1-C-16
Kerr, Graham K	0.1.v, P1-H-64, P2-K-92,	Kress, Maximilian	P1-C-16
	P3-E-34	Kress, Michael J	P1-D-26
Kerse, Ngaire M	P1-N-108, P3-C-17	Krewer, Carmen	P2-W-171
Keshner, Emily A	P2-X-190	Kribus-Shmiel, Lotem	P3-N-114
Keywan, Aram	0.3.i, P1-X-188	Kroszkewicz, Kathryn Krupp, Sonia	P2-N-117
Kezic, Sanja Khalaf, Poya	P2-V-160 P3-K-89	Krupp, Sonja Krystkowiak, Pierre	P1-C-16 0.6.iv
Khobkhun, Fuengfa	P2-0-127	Kubala Havrdova, Eva	P3-0-138
Khoo, Tien K	P1-E-40	Kubik, Kellen J	P1-W-183
Kihara, Yuriko	P1-B-6, P1-H-73	Kubota, Shigeki	P1-K-91, P1-U-155
(ikumoto, Touyou	P2-H-65	Kubota, Keisuke	P3-D-26
(ilby, Jeff	P2-K-91	Kudelka, Jennifer	P1-C-16
(illane, Isabelle	P3-F-40	Kuhlenbäumer,	P1-C-16
Gillingbeck, Jaimie	P3-W-179	Gregor	
Kim, Aram	S.10iii, P3-Q-132	Kuijpers, Rosanne	P2-J-86
Kim, Janis J	P3-N-107	Kulig, Kornelia	P3-H-72
Kim, Min-Ji	P1-C-14, P2-N-116	Kulkarni, Ashwini	P2-N-112, P3-N-102
Kim, Nikko	P3-I-78	Kulpa, Richard	P1-P-126
Kim, Taeho	P3-N-117	Kumar, Pawan	P1-V-161 P2-D-25
Kim, Junggil Kimal Naar Shani	P1-F-42, P3-N-117	Kuo, Chung-Hsien Kuo, Nai-Hua	P2-H-75
Kimel-Naor, Shani	P1-L-96, P3-N-114 P2-W-177	Kurita, Satoshi	P1-C-14, P2-N-116
Kimura, Hiromoto King, Emily C	P2-w-1/7 P3-W-172	Kurrle, Susan E	P3-F-43
King, Laurie A	S.6iv, 0.1.iv, P2-H-69,	Kurth, Roland	P1-C-16
ning, Laurie A	P3-V-165, P3-Y-189	Kurtz, Ilan	P2-Q-136
Kinnaird, Catherine	P1-K-92	Kurz, Ilan	P1-Q-142, P2-N-106,
Kinrade, Noel	P2-G-44		P3-N-109
Kiriella, Jeevaka B	P1-V-164, P3-B-8	Kuys, Suzanne S	P3-Q-127
Kirk, Cameron	P2-H-54	Kuze, Bunya	P3-X-184
Kirmizi, Muge	P1-W-179, P2-D-26	Kuznetsov, Nicole	P1-H-54
Kissima, John	P1-A-1	L. Helbostad, Jorunn	P1-M-101
Kistner, Andréa	P1-G-48, P2-W-178, P3-Q-140	Labban, Jeff D	P2-G-51, P2-N-111, P2-N-113, P3-H-65,
Kita, Shunsuke	P3-D-26		P3-N-113
Kizony, Rachel	0.2.iii, P2-G-47	Lafontaine, Anne-Louise	P1-E-36
Klamroth, Sarah	0.1.viii, P1-B-7, P3-M-95	Lagravinese,	P1-Q-130, P2-E-35,
Klenk, Jochen	P3-N-115	Giovanna	P1-Q-130, P2-E-33, P2-Q-144
Kleynen, Melanie	P2-B-7	Lai, Justine	P2-C-15
Klucken, Jochen	0.1.viii, P1-B-7, P3-M-95	Laing, Andrew C	0.4.i, P2-B-8
Kluft, Nick Knapskog, Anne-Brita	P2-H-62 P1-F-44	Lajoie, Yves	P1-E-39, P2-G-49
Knight, Christopher A	P1-r-44 P2-R-154	Lamontagne, Anouk	S.1iii, S.1iv
Knox, Rebekah J	P3-J-84	Lamoth, Claudine	S.14.iv, P1-B-10, P2-B-5,
	P1-C-16		P2-B-6, P2-C-20, P3-B-5
MIUDIEL SLEDIANIE		Lamourous, Etianno	D1 D D
Knüpfer, Stephanie Kobayashi, Syuhei	P2-H-76	Lamoureux, Etienne Lang, James	P1-B-3 P2-C-21

75

NAME	POSTER NUMBER
Lang, Kimberly	0.4.vi
Lanovaz, Joel L	P1-V-161, P2-B-4,
	P2-H-63, P2-K-93
Lapidus, Jodi	0.1.iv
Lavieille, Jean-Pierre Lawson, Rachael A	P2-X-182
Lawson, Nark A	P1-E-40, P1-G-51 P1-E-32, P2-E-34
Le, Victor C	P2-K-94
Le Borgne, Nicolas	P3-P-122
Le Flem, Damien	P3-U-156
Le Mouel, Charlotte	P2-N-119
Leach, Julia M	S.6ii
Leavy, Breiffni	P1-M-99, P3-M-96
Leclerc-Valade,	P3-W-176
Alexandra Lee, Anna	P1-N-118
Lee, Jae W	P1-H-61, P1-H-67,
Lee, Jae W	P1-K-90
Lee, Jinsoo	P1-F-42, P3-N-117
Lee, Pei-Yun M	P2-H-75, P3-H-60
Lee, Shu-Chun	P2-M-101
Lee, Hwan Ho	Р1-Н-68
Lee, Shu En	P1-C-19
Lees, Carolyn	P2-N-104, P3-V-168
Lelard, Thierry	0.6.iv
Lemaire, Antoine Lester, Mark	P3-D-28
Lester, Mark	0.3.v, P2-X-189, P3-X-185 P3-D-28
Lev Lehman, Rotem	P3-K-85
Levin, Chedva	P2-N-105
Levin, Mindy F	P3-V-169
Levy, Aviran	0.6.i
Lewis, Emma Grace	P1-A-1
Lewis, Simon	0.6.ii, P2-E-30
Leypoldt, Frank	P1-C-16
Li, Karen Z	S.10ii, 0.6.v
Lim, Shannon B Lima-Pardini,	P2-E-33, P3-E-35 P2-Q-150
Andrea C	12-0-130
Lin, Denise	P2-Q-143
Lin, Sang-I	P2-H-75, P3-H-60
Lin, Shang-Chih	P2-D-25
Linassi, Gary A	P2-B-4
Linn-Evans, Maria	0.1.vii
Lippi, Vittorio	P2-P-129, P2-V-164
Lipsitz, Lewis A	P3-E-36
Lirani-Silva, Ellen	P1-G-51, P2-E-39, P2-Q-137
Lisboa, Paulo J	P2-N-104
Liu, Rui	РЗ-Е-37
Liu, Zhu	P3-Q-149
Liu, Anmin	P1-D-25
Liu, Kristie	P2-K-90
Livne, Yaakov	P3-K-85
Lo, On-Yee	P1-0-121, P1-W-180,
Löfgren, Niklas	P3-E-32, P3-E-36 0.1.ii
Lohse, Keith R	P1-G-49
LoJacono, Chanel T	P1-D-26, P2-G-51,
	P2-N-111, P2-N-113
Lommen, Jonathan	P1-Q-140
Lomond, Karen V	P1-V-167, P3-H-61
Lord, Stephen R	S.11iii, O.2.vi, O.2.vii, P2-E-31,P3-C-20, P3-E-37, P3-F-43, P3-Q-133
Lord, Sue	P1-E-40, P1-G-51, P1-N-107, P1-N-108, P1-O-120, P2-Q-131,
	P2-Q-151, P2-Q-153
Louie, Denis R	P2-E-33, P3-E-35

NAME	POSTER NUMBER
Lowry, Kristin	P2-C-21
Loyd, Brian J	0.3.v, P1-Q-133, P2-X-189 P3-X-185
Lu, Chiahao	P1-Q-141
Ludington, Alexa M	P1-0-121, P1-W-180
Lugassy, Liav	P3-W-176
Luijten, Yara	Р1-Н-65
Lutz, Nathanael	P1-K-88
Luu, Minh J	P1-B-11, P3-H-71
Lympouridis, Vangelis	S.10iii
Lynch, Sean D	P1-P-126 P2-K-94
Ma, Christina Z Maas, Huub	P2-R-94 P3-B-4
MacDonald, Mary	P3-H-62
Elise L	
MacDonald, William B	P1-S-154
Machado, Giovanna A	P1-Q-128
MacKinnon, Colum D	0.1.vii, P1-Q-141
MacLellan, Michael J	P3-I-79
MacMahon, Maureen	P2-H-67
Mac-Thiong, Jean-Marc	P1-X-187
Maeland, Silje	P2-H-56
Maetzler, Corina	P1-C-16
Maetzler, Walter	P1-C-16, P1-Q-150, P2-Q-140, P3-C-14, P3-Q-126
Maetzold, Sara	P1-C-16
Maganaris,	P2-N-104, P3-N-116,
Constantinos N	P3-V-168
Magnani, Rina	0.5.iji
Mahmoud, Sami	P3-G-46
Maia, Luis F	P1-C-16
Maidan, Inbal	S.6iii, O.6.i, P1-Q-142,
	P3-G-49, P3-N-109, P3-Q-135
Maier, Andrea B	P1-C-24, P1-W-175,
	P2-W-176, P3-C-18,
	P3-C-19
Maille, Benoit Mairon, Rotem	P1-J-84 0.6.viii
Major, Matthew J	P3-N-107
Mak, Margaret K	P3-M-97
Maki, Brian E	P3-W-172
Malcolm, Rhianna	P1-M-100
Malloggi, Chiara	P3-B-6, P3-H-63
Diletta	15 0 0,15 11 05
Mamouh, Said	P2-C-15
Mancini, Martina	S.6iv, O.1.iv, P1-A-2, P1-K-
	93, P2-Q-146, P2-E-29, P2-E-38, P3-Q-129
Mangan, Gary	P3-N-110
Mani, Hiroki	P3-I-80
Manor, Brad	P1-G-52, P1-0-121,
	P1-W-176, P1-W-180,
	P2-F-43, P2-L-95, P3-E-32 P3-E-36, P3-H-53
Mansfield, Avril	РЗ-Е-30, РЗ-П-33 S.11iv, P1-W-177, P2-D-
Mansheld, Avri	27, P2-M-102, P2-W-169, P3-G-44, P3-0-121,
	P3-Q-130, P3-W-179
Mansour, Mahmoud	0.6.iii
Mantilla, Juan	P2-H-55
Mariani, Benoît	P2-A-1
Marinus, Johan	0.2.viii
Marks, Charles R	P3-W-173
Marques, Larissa T	P2-C-18
Marquesini, Raquel	P2-Q-150
Marques-Vidal, Pedro	P2-A-2
Manuel Martinez, Aquiles	Р2-К-87

NAME	POSTER NUMBER
Martinez, Katherine M	P1-0-122
Martínez, Aquiles	S.9iii
Martini, Douglas N	0.1.iii, P2-L-96, P3-V-165 P3-Y-189
Martin-Lemoyne, Valérie	РЗ-К-86
Marushima, Aiki	P1-0-125, P1-U-155, P2-0-128, P2-U-156
Marusic, Uros	P1-E-34
Marzeliak, Oleg	P1-L-96
Masani, Kei	P1-H-61, P1-H-67, P1-K-90, P2-C-22
Maslivec, Amy	P1-Q-152
Maslon, Agata	P3-H-59
Mastruserio, Nicholas	P2-N-110
Masugi, Yohei Mata, Ignacio	P3-E-33, P3-V-170 0.1.iii
Matar, Elie	0.6.ii, P2-E-30
Mathur, Sunita	P2-M-102
Matsunaga, Ayaka	P2-Q-139
Mauerberg-deCastro, Eliane	P1-V-163
Maurer, Christoph	P2-H-64
Maurits, Natasha M	P3-B-10
Mawston, Grant Mc Ardle, Riona	P2-K-91 P2-F-41, P3-E-38, P3-F-4
McCarten, J. Riley	P2-F-43
McCarthy, Joseph	P2-G-44
McCrum, Christopher	S.11ii, P1-X-186, P2-D-27 P3-B-11
McCue, Patrica	P1-0-120
McFadyen, Bradford J	S.4i, P1-H-59, P1-V-158
McIlroy, Robert	P3-Y-188
McIlroy, William E	P1-E-32, P2-E-34, P3-N-110
McInerney, Garth	P3-F-43
McIntosh, Emily I McKay, J. Lucas	P3-N-111 0.4.vi
McKeown, Martin J	P1-E-37
McNames, James	P1-A-2, P2-Q-148, P3-A-2 P3-Q-134
McNeil, Chris J	P2-V-163
Meaney, Andy	P2-H-78
Meerhoff, Laurentius A	P1-P-126
Mehta, Shyamal	P3-Q-125
Meijer, Kenneth	P1-X-186, P2-B-7, P3-B-11, P3-D-27
Meijer, Onno G	P3-H-66
Meinzer, Marcus	P2-K-92
Mellone, Sabato	S.6ii, P1-C-24, P1-M-98, P2-W-176
Melzer, Itshak	S.3i, P1-Q-136, P2-N-106 P3-K-85, P3-N-112, P3-N-114
Menant, Jasmine C	P2-E-31, P3-E-37, P3-Q-133
Menna, Francesco	P1-I-75
Menon, Carlo	P1-W-178
Menzies, Oliver	P3-C-17
Merfeld, Daniel M	P3-X-186
Mergner, Thomas	P2-P-129, P2-V-164, P3-V-158
Meskers, Carel C	P3-C-19
Meszaros, Andrew	0.3.iii
Meyns, Pieter	P1-C-23, P1-D-29, P1-O-123, P3-D-27
Mezher, Cézar	P1-D-27
Michalishen, Logan	P2-H-63

76

NAME	POSTER NUMBER
Mikolaizak, A.Stefanie	P1-C-24, P1-M-98, P1-W-175, P2-W-176, P3-C-18
Mildren, Robyn L Mille, Marie-Laure	0.3.vi, P1-C-22, P1-V-160 P1-N-111, P1-O-122, P3-M-98
Miller, Haylie	S.1i, P1-J-86
Mills, Richard S	P1-I-77, P2-H-54
MINE, Yasuhiro	РЗ-К-88
Miral, Marion	P1-J-84
Miranda, Zoé Mirelman, Anat	P2-H-67 S.2iv, S.6iii, 0.6.i, P1-Q- 142, P1-W-174, P2-L-95, P2-Q-136, P2-Q-144, P2-W-174, P2-W-175, P2-W-174, P2-W-175, P2-W-174, P3-K-109, P3-Q-135, P3-Q-145, P3-W-174
Mitchell, Katelyn	P1-V-162
Mitchell, Trina M	P1-E-36, P1-Q-145
Mitra, Suvobrata	P2-G-52
Miura, Kousei	P3-W-181
Miyagishima, Saori Mizelle, Chris	P3-I-80 P1-E-35
Mizuta, Naomichi	P1-Q-143, P2-Q-139
Mochizuki, George	P2-M-102
Modie, Kurt	P1-B-3
Moe-Nilssen, Rolf	P1-C-12, P2-C-19
Mohand-Said, Saddek Möhwald, Ken	P3-C-13 P3-O-136
Monaghan, Andrew S	P3-Q-136 P1-V-168, P2-V-168,
	P3-D-24
Monchi, Oury	P1-E-36
Montero Odasso,	P1-F-43, P3-F-42
Manuel M Montine, Thomas J	0.1.iii
Mon-Williams, Mark	P1-V-156
Moore, Sarah A	P1-0-120
Moraes, Renato	P1-C-13, P1-C-21, P1-V- 161, P1-V-163, P3-H-64
Moran, Uria Morany, Gaudry	P1-R-153
Moreau-Gaudry, Alexandre Morel, Eric	P2-W-178 P2-C-13
Moretto, Gabriel F	P1-Q-147
Mori, Laura	P1-Q-130
Moriarty, Frank	P3-L-93
Morioka, Shu Morris, Posio	P1-Q-143
Morris, Rosie	0.1.iii, P1-G-51, P1-N-107, P1-Q-151, P2-Q-151, P2-Q-153
Morris, Amanda J	S.15iii
Morrison, Steven	P3-Q-137
Morrow, Daniel G Morscovich, Mariana	P2-W-181 P1-C-16
Morse, Christopher I	P1-N-117
Moscato, Serena	P2-N-108
Mouchnino, Laurence	P1-E-33, P3-V-161
Mouras, Harold	0.6.iv
Mowbray, Rachel	P1-I-78 D2 V 197
Moyaert, Julie Moyes, Simon	P3-X-187 P1-N-108
Moyle, Gene	P1-H-64
Müller, Martijn T	0.1.i, P1-E-34, P1-Q-132, P2-E-32, P3-Q-124
Müller, Friedemann	P2-W-171
Müller, Theresa	0.4.vii
	0.4.vii P1-Q-138 P2-D-28

NAME	POSTER NUMBER
Murray, Nicholas P	P1-E-35
Muru-Lanning,	P1-N-108
Marama Mushtaq, Faisal	P1-V-156
Musselman, Kristin E	P1-H-61, P1-H-67, P1-K-
	90, P1-V-161, P2-B-4
Muthalib, Mark	P3-E-34
Nachmani, Hadas	P3-N-112
Nadkarni, Anandita Najafi, Bijan	P3-Q-125 P2-G-48
Nakakubo, Sho	P1-C-14, P2-N-116
Nakamura, Takahito	P2-H-65
Nakatani, Tomoki	P1-Q-143, P2-Q-139
Nakazawa, Kimitaka	P3-E-33, P3-V-170
Nandi, Tulika Nantel, Julie	S.15ii P1-D-27, P1-H-62,
hunce, suice	P1-N-114, P1-Q-140, P3-H-62
Naudé, Yanto	P2-K-91
Nazarpour, Kianoush	P2-Q-141
Neptune, Richard R Nerz, Corinna	P1-H-72 P1-M-98, P1-W-175,
	P2-W-176
Nester, Chris	P3-W-178
Neto, Acacio M	P2-Q-150
Neumann, Patricia	P1-C-16
Nicholson, Gareth Nielsen, Emma I	P2-C-17 P2-X-183, P3-G-51
Niemann, Katharina	P1-C-16
Nienhuis, Bart	Р1-Н-65
Nieuwboer, Alice	0.1.vi, 0.6.vii, P1-E-31,
	P1-Q-132, P1-Q-134, P1-Q-135, P1-Q-148,
	P2-Q-135, P2-Q-148,
	P3-A-1, P3-Q-135,
Nieuwskief Freisle	P3-Q-143
Nieuwhof, Freek Nigam, Anil	P3-A-1 0.6.v
Nikamp, Corien	P2-W-170
Nikulin, Vlad	Р2-Н-72
Nishikawa, Koyuki	P1-B-6
Noamani, Alireza	P1-W-184
Nocera, Dana M Noé, Frédéric	P1-W-183 P3-N-105
Noémie, Anctil	P2-V-166
Norris, Meriel	P1-Q-152
Norvang, Ole Petter	P1-0-124
Nouredanesh, Mina	S.8ii
Novak, Alison C	S.12i, P3-N-103, P3-W-172
Novotna, Klara	P3-Q-138
Nozaki, Daichi	РЗ-В-9
Nucchaum Cucanno	P2-Q-140, P3-C-14
Nussbaum, Susanne	
Nutt, John G	0.1.iv, P1-A-2, P2-L-96,
	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2,
	0.1.iv, P1-A-2, P2-L-96,
Nutt, John G Nyquist, Linda Oates, Alison R	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel O'Connell, Devin	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-100 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56 0.1.vii
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel O'Connell, Devin O'Connell, Caitlin O'Day, Johanna J Odin, Anais	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-100 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56 0.1.vii P1-E-35
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel O'Connell, Devin O'Connell, Caitlin O'Day, Johanna J Odin, Anais Offret, Olivier	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56 0.1.vii P1-E-35 S.9ii P2-W-178 P3-C-13
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel O'Connell, Devin O'Connell, Caitlin O'Day, Johanna J Odin, Anais Offret, Olivier Ogawa, Shino	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56 0.1.vii P1-E-35 S.9ii P2-W-178 P3-C-13 P2-H-76
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel O'Connell, Devin O'Connell, Caitlin O'Day, Johanna J Odin, Anais Odir, Anais Ogawa, Shino Ogawa, Tetsuya	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56 0.1.vii P1-E-35 S.9ii P2-W-178 P3-C-13 P2-H-76 P3-V-170
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel O'Connell, Devin O'Connell, Caitlin O'Day, Johanna J Odin, Anais Offret, Olivier Ogawa, Shino Ogawa, Tetsuya Ogliastro, Carla	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56 0.1.vii P1-E-35 S.9ii P2-W-178 P3-C-13 P2-H-76
Nutt, John G Nyquist, Linda Oates, Alison R O'Brien, Thomas D Ochoa, Manuel O'Connell, Devin O'Connell, Caitlin O'Day, Johanna J Odin, Anais Odir, Anais Ogawa, Shino Ogawa, Tetsuya	0.1.iv, P1-A-2, P2-L-96, P2-Q-148, P3-A-2, P3-Q-129, P3-Q-134 P2-N-110 P1-V-161, P2-B-4, P2-H-63, P2-K-93 P2-N-104, P3-V-168 P3-H-56 0.1.vii P1-E-35 S.9ii P2-W-178 P3-C-13 P2-H-76 P3-V-170 P2-E-35

NAME	POSTER NUMBER
Ojeda, Lauro	P2-N-110
Okada, Risa	0.2.i
Okada, Yohei	P2-Q-139
Okano, Masahiro O'Keefe, Joan A	P3-W-177 P1-I-79, P1-I-80, P2-H-68
o Reele, Joan A	P2-L-97, P3-H-67, P3-Q-139
Oktay, Liam	Р1-Н-55
Okubo, Yoshiro	S.11iii
Olde Rikkert, Marcel	P3-W-174
Oldham, Jessie R	P1-Q-131, P2-R-154, P3-R-150
O'Leary, Thomas J Oliveira, Julia A	P1-D-25 P1-W-171, P2-B-10,
Unvena, Juna A	P2-H-66, P3-M-99, P3-N-100
Olivier, Anne-Hélène	S.4iii, P1-I-81, P1-P-126, P2-V-167, P2-W-179, P3-P-122
Omana, Humberto	P1-Y-191, P2-K-89,
	P3-K-87
Orban de Xivry, Jean-Jacques	P1-E-31
Orcioli-Silva, Diego	P1-E-31, P1-G-47,
	P1-Q-129, P2-E-39,
Orejel Bustos,	P2-Q-137, P3-Q-148 P3-W-171
Amaranta	- J-W-1/ I
Ouyang, Bichun	РЗ-Н-67
Owaki, Dai	P2-H-71
Ozawa, Yu	P1-V-166
Padovani, Alessandro	P1-C-16
Paez, Diego Pai, Clive	P1-K-91 P1-N-118, P2-B-3
Palaper, Leah	P3-C-17
Palazzolo, John M	P2-G-51, P2-N-111,
	P2-N-113, P3-H-65,
Palmer, Alexandra	P3-N-113 P1-I-79, P1-I-80
Palmerini, Luca	P2-N-108
Palmers, Lotte	P1-C-23
Palumbo, Pierpaolo	S.6ii, P2-N-108
Pan, Hua	P3-Q-149
Pantall, Annette	P1-C-19, P1-E-31, P2-Q-141, P3-E-29
Papaiordanidou, Maria	P3-M-98
Papegaaij, Selma	S.15ii, P2-N-118
Papoutselou, Efstratia	P3-G-46
Paquette, Caroline	P1-B-5, P1-E-36,
Daramathavala-	P1-Q-145, P3-E-30
Paramathayalan, Vignesh R Paraschiv-Ionescu,	P2-W-181 P2-W-176, P3-C-18
Anisoara	
Paratz, Jenny D	P3-Q-127
Pardhan, Shahina	P1-N-119
Pardo, Fabrice Parmet, Yisrael	P3-V-161 0.6.viii
Parreira, Rodolfo	P3-D-28
Parrent, Andrew	S.9i, P3-K-91
Parrington, Lucy	P2-H-69, P3-V-165, P3-Y-189
Parshikov, Alexey	Р2-Н-72
Parton, Andrew	P2-N-114
Parulekar, Medha	P1-I-79, P1-I-80, P2-L-97
Paschen, Steffen Paselk, Nick	Р1-С-16 Р3-Н-61
Pasluosta, Cristian F	P1-B-7, P2-B-9, P3-M-95
Pasman, Elizabeth P	P1-E-37, P1-G-47
Patashov, Dmitry	0.6.i

2019 ISPGR WORLD CONGRESS

┥ ToC

2019 ISPGR WORLD CONGRESS

ToC

NAME	POSTER NUMBER	NAME	POSTER NUMBER
Patikas, Dimitrios	РЗ-Н-73	Pliner, Erika M	0.2.vi
Patten, Carolynn	Р1-Н-72	Plotnik, Meir	S.1ii, O.4.ii, P1-L-96,
Patterson, Kara K	P2-H-57, P2-Q-138,		P1-W-170, P2-N-107,
,	P2-W-169, P3-B-7,		P2-W-172, P3-N-114
	P3-G-44, P3-0-121	Plummer, Prudence	P2-G-48, P3-G-47
Patterson, Rita	S.1i, 0.5.vi, P3-N-101	Polastri, Paula	P1-E-32, P2-E-34,
Paul, Serene S	0.3.v, P2-X-189, P3-Q-133,	,	P2-V-157
	P3-X-185	Polskaia, Nadia	P1-E-39, P2-G-49
Payne, Narelle	P3-F-43	Ponte, Chiara	P1-Q-130
Pegoraro, Roger	P3-E-34	Pontes, Tatiane L	P1-C-20, P2-C-16
Pelicioni, Paulo	S.2i, P2-E-31, P3-E-37	Poole, Victoria	P3-E-36
Pelosin, Elisa	P1-Q-130, P2-E-35,	Port, Waiora	P1-N-108
r ciusiii, Liisa	P2-Q-144		P2-C-16
Panada Tizaa	P2-V-157	Porto, Jaqueline M	
Penedo, Tiago Dener Lieko C		Poston, Kathleen	0.1.iii
Peper, Lieke C	P1-H-71	Pothier, Kristell	0.6.v
Pereira, Marcelo P	P1-Q-129, P1-Q-144	Potvin-Desrochers,	P1-E-36, P1-Q-145
Pérennou, Dominic	P1-G-48, P2-W-178,	Alexandra	
	P3-Q-140	Power, Cecilia R	P1-V-164
Perez, Claire	P3-W-176	Power, Geoffrey A	P3-V-167
Perg, Lesley	P1-Q-141	Pradhan, Deepa U	P1-Q-146
Perrin, Philippe	P3-Q-141	Prakruti, Patel	P3-B-3
Perry, Lindsay	Р1-Н-72	Price, Chris I	P1-0-120
Perry, Stephen D	P1-D-28, P3-K-90	Price, Jaykob	P2-H-77
Persiani, Michela	P3-C-20	Prigent, Gaelle	P1-M-101
Perucca, Laura	P3-H-63	Prins, Maarten R	P3-H-66
Perusquia Hernandez,	P2-H-59, P3-H-58	Protopapas, Katrina	P1-D-28
Monica	0-11-37,13-11-30		
Pessanha, Fernanda P	P1-C-20, P2-C-18	Provasi, Joëlle	S.13i
Peterka, Robert J		Puehler, Thomas	P1-C-16
reterka, Kobert J	P2-H-69, P3-V-165,	Puentes, Sandra	P1-U-155, P2-U-156
Datars Duar M	P3-X-186	Puil, Carole	P2-W-179
Peters, Ryan M	0.3.vi, 0.3.vii, 0.3.viii,	Puissegur, Ophelie	0.5.vi
	0.6.vi, P2-V-165	Punchak, Emily	P1-N-110
Peters, Sue	P2-E-33	Purcell, Nicollette L	P1-I-79, P1-I-80, P2-H-6
Peterson, Daniel S	0.1.iv, P2-H-70, P2-Q-146,		P2-L-97, P3-H-67,
	P3-D-24, P3-Q-125,		P3-Q-139
	P3-Q-147	Putzolu, Martina	P1-Q-130, P2-E-35,
Petrucci, Matthew	0.1.vii, P1-Q-141	,	P2-Q-144
Pettre, Julien	S.4iv, P1-P-126, P3-P-122	Qi, Jing	P2-K-92
Peultier-Celli, Laetitia	P3-Q-141	Qing Shi, Jian	P1-P-127
Peyre, Hugo	P2-T-155	Qiu, Feng	0.1.v
Pfeifer, Klaus	0.1.viii, 0.4.vii, P1-B-7,	Quinn, Joseph	0.1.iii
	P3-M-95		
Pfrimer, Karina	P1-C-20	Raatz, Breanna	P1-J-85, P2-J-83
Pham, Brendon	P3-K-86	Radloff, Franziska	P1-C-16
Pham, Hoang M	P1-C-16	Raffegeau, Tiphanie E	P1-G-49, P2-H-69
		Rafiq, Wasseem	P3-W-178
Pham, Minh H	P3-C-14	Ragothaman,	0.1.iv, P3-Q-129
Phillips, Joseph	0.6.ii, P2-E-30	Anjanibhargavi	
Phillips, Natalie	S.10ii	Rahman, Tabassum	P1-E-39
Pichora-Fuller, M.	S.10ii	Raisbeck, Louisa D	P2-G-51, P2-N-111,
Kathleen			P2-N-113, P3-N-113
Pierelli, Francesco	P3-Q-144	Ramamoorthy, Akila	P2-Q-143
Pieruccini-Faria,	P1-F-43, P1-Q-149,	Ramirez, Odair B	P3-D-23
Frederico	P3-F-42	Ramos Claret, Claudia	P2-B-9
Pietrangelo, Filomena	P3-W-176	Ranavolo, Alberto	P3-Q-144
Pijnappels, Mirjam	S.5iii, P1-C-24, P1-W-175,	Rand, Debbi	P2-N-105
	P2-H-62, P2-N-118,	,	
	P2-N-123, P2-V-157,	Randi, Pericle	P2-N-108
	P2-W-176, P3-C-18,	Ranhoff, Anette H	P1-C-12
	P3-C-19, P3-C-22	Rapos, Victoria D	P1-I-81, P2-V-167
Pilotto, Andrea	P1-C-16	Ratnam, Rama	P2-W-181
Pion, Charlotte H	P2-C-15, P2-H-67	Ratte, Juliane	P2-G-49
Pirodeau, Lucie	P1-J-84	Rauter, Georg	P2-0-124
Piscicelli, Céline	P1-G-48, P2-W-178,	Ravi, Deepak K	P2-Q-145
i istitetii, tenine	P3-Q-140	Ravid, Natalie	P1-F-43
Piscitelli, Daniele		Ray, Nicola	S.14i
,	P3-V-169	Reches, Tal	P1-W-176, P3-Q-142
Pitman, Jenna G	P1-H-70, P1-M-100,		
D. D.	P3-H-54	Redfern, Mark S	0.2.vi
Pivron Braquet,	P1-J-84, P1-N-109,	Reed-Jones, Rebecca	P1-H-70, P3-H-54
Emmanuelle	P3-N-105	Reeves, Joanna	P3-W-178
N		Reeves, Neil D	S.12ii
Plasqui, Guy Plater, Emma	P3-D-27 P2-V-165	Regev, Keren	P2-W-180, P3-Q-145

www.ispgr.org | @ISPGR | JUNE 30 – JULY 4

NAME	POSTER NUMBER
Rehman, Rana Zia UR	P1-P-127
Reilly, Richard	P3-F-40
Reimann, Hendrik	P1-H-58
Reinders-Messelink,	РЗ-Н-74
Heleen Reinthal, M Ann	P1-N-110, P2-N-117, P3-K-89
Ren, Sato	P1-B-6
Rennie, Linda	0.1.ii
Reynolds, Raymond F	P3-V-166
Reznicek, Petr	P3-Q-138
Rhea, Christopher K	P1-D-26, P1-V-165,
	P2-G-51, P2-N-111, P2-N-113, P3-H-65
Ribot-Ciscar, Edith	P1-E-33
Richards, Elizabeth	P3-H-56
Richardson, James K	S.5i
Richer de Forge, Sophie	P1-J-84
Richmond, Sutton B	P1-V-168, P2-H-70,
Riedel, Christian	P2-V-168, P3-D-24 P1-C-16
Rieger, Markus	P2-N-118
Rietdyk, Shirley	P1-G-46, P2-N-112,
	P3-H-56, P3-N-102
Rijken, H.	P3-U-157
Rinaldi, Natalia M	P1-C-21, P3-H-69
Riviere, Valerie	P1-J-84
Rizzetti, Maria C	P1-C-16
Robb, Kelly A	P3-K-90
Robert, Thomas	P1-N-111, P2-N-119
Roberts, Andrew J	P1-D-25
Robertson, Erin Robinovitch,	P3-Q-139 S.8iii, O.4.iii, P1-N-113,
Stephen N	P3-N-108
Rochester, Lynn	P1-A-1, P1-E-31, P1-E-40, P1-G-51, P1-K-93, P1-N-107, P1-0-120, P1-P-127, P1-Q-151, P2-F-41, P2-Q-131, P2-Q-141, P2-Q-151, P2-Q-153, P3-A-1, P3-E-29, P3-E-38, P3-F-41, P3-Q-135, P3-W-174
Rodrigues, Sérgio T	P2-V-157
Rodriguez, Raul	P1-H-54
Roeder, Luisa	P3-E-34
Roelofs, Jolanda Roerdink, Melvyn	S.3iv 0.2.viii, P1-H-71, P1-K-89,
	P2-G-50
Rogers, Helen	P1-0-120
Rogers, Mark W	P1-0-122
Romine, Nathaniel L	P1-G-46
Rosano, Caterina	P2-E-36
Rosenblatt, Noah J	P1-M-102, P3-H-70
Rosenblum, Uri	P2-W-172
Rosenblum Belzer, Uri D	P3-N-114
Ross, Scott E Rosso, Andrea	P1-V-165, P3-H-65
Rosso, Andrea Rota, Viviana	P2-E-36 P3-H-63
Rouchon,	P2-K-88
Marie-Emmanuelle	. 2 11 00
Rouhani, Hossein	P1-W-184
Roy, Eric	P1-Q-149
Ruffini, Giulio	P1-G-52
Ruitenberg, Marit F	S.15i
Russo, Yuri	P3-W-171
Russo-Junior, Douglas V	P1-Q-128

NAME	POSTER NUMBER
Rust, Heiko	P1-K-88
Rutz, Erich	P2-J-85
Ruwe, Boris	P2-I-82
Rylander, Jonathan H	P1-H-60, P3-R-151
Rynders, Corey A	P3-Q-137
Saba, Nadja Sablowsky, Simono	P3-W-175 P1-C-16
Sablowsky, Simone Saeys, Wim	P1-X-186, P3-X-187
Sahel, José-Alain	P3-C-13
Saini, Serena	P2-H-63
Saito, Yutaro	Р1-Н-69
Saj, Arnaud	P2-X-182
Sakima, Tamotsu	P3-K-88
Sakurai, Ryota	P1-V-166
Salah, Sawsen	P3-C-13
Salamaga, Marcin	P3-H-59
Saltvedt, Ingvild Salvo, Lora	P2-F-42 P3-W-176
Samotus, Olivia	S.9i, P3-K-91
Sandri Heidner,	P1-E-35
Gustavo	
Sankai, Yoshiyuki	P1-0-125, P1-U-155,
	P2-0-128, P2-U-156,
	P3-W-181
Sansom, Jennifer	P1-V-167, P3-H-61
Santana, Dinah S	P3-D-23
Santi, Rafael A	P2-H-60 P1 V 162
Santiago, Paulo P Santinelli, Felipe B	P1-V-163 P1-Q-147
Santos, Luciana O	P3-H-64
Santos, Paulo Cezar R	P1-Q-129, P2-C-20
Sarquis-Adamson,	P1-F-43, P3-F-42
Yanina	
Sasaki, Yoshihiro	P1-W-181
Sato, Toshihiko	P2-D-24
Sato, Yui	P2-I-81, P2-N-122
Saucedo-Zainos,	P2-X-188
Ana L Saumur, Tyler M	P2-M-102
Saviers-Steiger, Janie	0.3.v, P2-X-189
Sawers, Andrew	0.4.iii, P1-C-13, P1-N-112,
	P3-N-107
Sayenko, Dimitry	0.4.viii
Scales, Melissa H	P1-K-94
Scarano, Stefano	P3-H-63
Schaake, Leendert	P2-W-170
Schanz, Elena M Schebesta, Linda	P1-C-16
Schepens, Bénédicte	P1-C-16 P3-H-71
Schicketmüller,	P1-C-16
Andreas	
Schieppati, Marco	S.6i, P3-G-48
Schinkel-Ivy, Alison	P1-W-177, P2-B-8,
	P2-D-27, P3-Q-130
Schleich, Kristen N	P1-V-165
Schlenstedt, Christian	0.6.vii, P1-Q-148, P2-Q-
	142, P2-Q-146, P3-Q-126, P3-Q-143,
Schmidt, Gerhard	P1-Q-150
Schmidt, Margot E	P1-C-22
Schnaider-Beeri,	P1-W-170
Michal	
Schniepp, Roman	P2-Q-147, P3-Q-136
Schofield, Andrew	P3-N-116
Scholten, Marlieke	P2-E-37
Schoonjans, An-Sofie	P1-J-87, P3-J-82
Schouenborg, Christel	P1-K-88 S.3iv
Schouten, Alfred Schut, Ingrid	S.3iv
Schütz, Adrian	P1-H-57

NAME	POSTER NUMBER
Schwartz, Sarah	0.6.iii
Schwenk, Michael	P1-W-175, P2-M-98,
Servering michael	P2-W-176
Schwickert, Lars	P3-N-115
Scott Langenecker,	P3-B-3
Scott	
Sczuka, Kim S	P3-N-115
Seamon, Bryant A	Р1-Н-72
Sebastião, Emerson	P1-Q-147
Seemann, Jens	P1-Q-139
Seidler, Rachael D	S.15i
Sekhon, Harmehr K	0.2.vi
Sekiguchi, Yusuke Sela, Itamar	P1-Q-138, P2-H-71
Selbæk, Geir	P3-V-160 P1-F-44, P3-C-21
Seng, Nigel	P3-E-37
Sengul, Yesim	P3-S-155
Seo, Jeongwoo	P1-F-42, P3-N-117
Serrao, Mariano	P3-Q-144
Servatius, Labeeby	P2-Q-152
Servatius, Richard	P2-Q-152
Seuthe, Jana	0.6.vii, P1-Q-148,
	P2-Q-142, P3-Q-143
Shah, Vrutangkumar	0.1.iv, P1-A-2, P2-Q-148,
V	P3-A-2, P3-Q-129,
ci : c	P3-Q-134
Shani, Guy	P2-N-106, P3-K-85
Shapiro, Amir	P2-N-106, P3-K-85
Shapiro, Boris	0.6.i
Sharma, Tushar Sharon, Topaz	0.3.vii P1-Q-142, P2-Q-136
Shaw, Lisa	P1-0-120
Shema Shiratzky,	P1-W-176, P2-W-180,
Shirley R	P3-Q-145
Sherrod, Gabriela M	P1-J-86
Shih, Hai-Jung (Steffi)	РЗ-Н-72
Shimada, Hiroyuki	P1-C-14, P2-N-116
Shimizu, Kotaro	P1-B-6, P1-H-73
Shimizu, Yukiyo	P1-K-91, P1-U-155
Shindo, Masato	P1-W-181
Shine, James M	0.6.ii, P2-E-30
Shinohara, Hidenori Shinya, Masahiro	P1-M-103 P3-D-25
Shipilov, Anatoliy	P1-I-82, P2-H-73
Shiratzki, Shirley S	P3-Q-135
Shishov, Nataliya	S.8iii, P1-N-113, P3-N-108
Shiwa, Taiko	P2-H-76
Shmuelof, Lior	0.4.v
Shochat, Tamar	0.2.iii
Shprits, Elizabeta	P1-L-96
Shukla, Kirat H	P2-K-93
Shull, Peter B	P2-K-94
Shulman, David	P1-M-100, P2-H-77
Shurupova, Marina	P3-H-52
Shustak, Shiran	0.6.i, P1-Q-142, P2-L-95
Sibley, Kathryn	P3-W-179
Sider, Jessica R	0.5.viii
Siegel, Markus	P2-E-37 P1-K-92, P2-K-94
Sienko, Kathleen Siev-Ner, Itzchak	P1-K-92, P2-K-94 P3-V-160
Silva, Fabiana A	P1-Q-147
Silva-Batista, Carla	P2-Q-134, P2-Q-150
Silveira, Carolina	P1-Q-149
Simieli, Lucas	P1-Q-147, P2-Q-149,
	P2-V-157
Simoneau, Martin	P1-E-33, P1-V-159,
	P2-V-166
Simsek, Ibrahim E	P1-W-179, P2-D-26
Singh, Navrag	P2-J-85, P2-Q-145
Siragy, Tarique	P1-D-27, P1-N-114

NAME	POSTER NUMBER
Skavberg Roaldsen, Kirsti	P1-M-99
Skervin, Timmion K	P3-N-116, P3-V-168
Skvortsov, Dmitry	P1-H-56, P1-I-82, P2-H-
	72, P2-H-73, P3-H-52,
	P3-R-152, P3-R-153
Smagula, Stephen	P2-E-36
Smith, Craig P	P3-V-166
Smith, Karaitiana Smith, Nicholas	P3-I-78 P3-V-163
Smith, Simon S	P2-K-92, P3-E-34
Smith, Simone	0.3.viii, P1-S-154,
,	P3-V-167
Smulders, Ellen	P2-J-86
Smulders, Katrijn	0.1.iii, 0.1.iv
Snyder, Natalie A	P1-I-81, P2-V-167
Soangra, Rahul Sobisek, Lukas	P1-I-76, P3-I-76 P3-Q-138
Sofer, Ilay	0.6.viii
Solis-Escalante,	0.4.iv, P3-B-10
Teodoro	,
Soltani, Abolfazl	P2-A-2
Song, Jooeun	P3-Q-133
Sonoo, Moeka	P3-D-26
Sorel, Anthony	P1-P-126
Soroker, Nachum Sorrento, Gianluca U	S.3i, P1-Q-136 P2-H-74
Sosnoff, Jacob J	P1-W-182, P2-W-180,
50511011, 50200 5	P2-W-181, P3-Q-137,
	P3-Q-145
Sotirakis, Harris	РЗ-Н-73
Sotnek, lan	P1-H-58
Soucy, Jean-Paul Sousa, Priscila N	P3-E-30 P2-E-39, P2-Q-137
Souza, Caroline R	P1-W-171, P2-B-10, P2-Q
Souza, caronne n	134, P2-Q-150, P3-M-99, P3-N-100, P3-S-154
Spain, Rebecca I	P2-Q-148, P3-A-2,
	P3-Q-134
Sparto, Patrick	P1-E-38
Spildooren, Joke springer, shmuel	P1-C-23 P1-R-153
Srikanth, Velandai	P1-C-18, P2-F-40, P3-C-1
Srivastava, Shraddha	Р1-Н-72
St-Amant, Gabrielle	P1-E-39
Stamenkovic, Alexander	P2-N-120
Starbuck, Chelsea	P3-W-178
Staring, Wouter	P1-B-9, P3-Q-146
Steenbock, Berit	P2-M-99
Steenbrink, Frans Steib, Simon	P2-N-118 0.1.viii, 0.4.vii, P1-B-7,
	P3-M-95
Stergiou, Nicholas	P3-H-73
Stern, Yaakov	P3-G-49
Stevens, Gordon	0.5.vi
Stewart, lan	P3-E-34
Stieglitz, Thomas	P2-B-9
Stins, John F	P2-G-50, P3-G-45, P3-W-180
Stokkermans, Mitchel Stout, Ruth D	0.4.iv P2-G-51, P2-N-111,
	P2-N-113, P3-N-113
St-Pierre Bolduc, Mélissa	Р2-Н-67
Strasburg, Debra	P2-N-110
Strauss, Hanna	P1-L-96
Street, Brian D	P1-N-115, P2-N-121, P3-N-104
Strouwen, Carolien	0.1.vi
Strzalkowski, Nicholas	0.3.viii

NAME	POSTER NUMBER
Stuart, Samuel G	S.6iv, P1-A-2, P1-K-93, P2-E-29, P2-E-38, P3-E- 29, P3-Q-129, P3-Y-189
Studenski, Stephanie	P2-E-36
Studt, Simone Sturnieks, Daina L	P1-C-16 S.11iii, O.2.vi, P2-E-31,
	P3-C-20, P3-E-37
Su, Dongning Sucha, Lucie	P3-Q-149 P3-Q-138
Suder, Agnieszka	P3-H-59
Sullivan, Karen	P1-H-64, P2-K-92
Sun, Ruopeng	P1-W-182, P2-W-180, P2-W-181, P3-Q-145
Sunderaraman, Preeti Suzuki, Kenji	P3-G-49 P1-K-91, P1-0-125,
Suzuki, Kenji	P1-U-155, P2-H-59, P2-0-128, P2-U-156, P3-H-58, P3-W-181
Sveistrup, Heidi	P1-I-77
Sverdrup, Karen Swanson, Clayton W	P3-C-21 S.15iv, P1-V-168, P2-H-70,
Swanson, clayton w	P2-V-168, P3-D-24
Synofzik, Matthis	P1-Q-139, P3-Q-131
Syrkin-Nikolau, Judy Tack, Gyerae	S.9ii D1 E 40 D2 N 117
Taguchi, Junji	P1-F-42, P3-N-117 P1-Q-143, P2-Q-139
Tai, Keita	P1-B-6
Takahashi, Kazutaka	P1-M-103
Takahashi, Kenji Takamura, Yusaku	P1-M-103 P1-Q-143
Takazono, Patricia S	P1-W-171, P2-B-10, P3-N-100
Takeda, Kenta	P3-I-80
Tan, Brandon Chen Yi Tan, Chun Kwang	P3-C-20 P1-0-125, P2-0-128,
iun, chun thung	P3-W-181
Taneda, Kenji	P3-I-80
Tangen, Gro G Tapin, Alexandre	P1-F-44, P2-F-42, P3-C-21 P3-H-55
Taraldsen, Kristin	P1-C-24, P1-F-44, P1-M- 98, P1-M-101, P1-W-175, P2-F-42, P2-W-176, P3-C-18
Tard, Céline	P2-Q-133
Tashiro, Hideyuki	P2-I-81, P2-N-122
Tatarelli, Antonella Taylor, John-Paul	P3-Q-144 P1-E-40, P1-Q-151, P3-E-38
Taylor, Morag E	P3-F-43
Taylor, William	P2-Q-145
Teh, Ruth Teixeira, Luis A	P1-N-108, P3-C-17 P1-W-171, P2-B-10, P2-H-66, P2-Q-134, P2-Q-150, P3-M-99, P3 N 100, P3 S 154
Telenius, Elisabeth W	P3-N-100, P3-S-154 P1-F-44
Tepenier, Laure	P3-C-13
Teresa, Liu-Ambrose	P3-N-106
Tesima, Newton Tesio, Luigi	P1-J-83 P3-B-6, P3-H-63
Theunissen, Kyra	P3-D-27
Thibodeau, Linda	S.1i, P3-N-101
Thiel, Alexander Thies, Sibylle B	P1-E-36, P3-E-30 P3-N-118
Thieves, Martina	P1-C-16
Thingstad, Pernille	P1-0-124, P3-C-21
Thomas, Alan Thomas, James S	P2-F-41, P3-F-41 P1-H-74, P1-W-183,
Thomas, James S	P1-H-74, P1-W-183, P2-N-120 S.12iv, P3-N-116,
	P3-V-168

UMBER
P1-K-93,
-38, P3-E-
P3-Y-189
P2-E-31,
-37
-92
-W-180,
-Q-145
-125,
H-59,
U-156,
/-181
68, P2-H-70,
D-24 0-131
Q-131
-117
Q-139
-B-10,
0 120
0-128,
-42, P3-C-21
,
-44, P1-M-
P1-W-175,
-176,
122
122
-151,
C-17
-B-10,
-134, M-99,
M-99, S-154
63
63
-30
-30 C-21
-30 C-21 -41
-30 C-21 -41
-30 C-21 -41 V-183,
63 -30 21 -41 V-183, 16,
-30 C-21 -41 V-183,

78 ToC

ToC

ł	
'	
9	

NAME	POSTER NUMBER
Van Emmerik, Richard E	P1-Q-147
van Hilten, Jacobus J	0.2.viii
van Keeken, Helco G	P3-B-10
Van Liew, Charles	P3-Q-147
Van Lummel, Rob C	P3-C-19
van Mierlo, Michelle	P2-I-82
van Nes, I.J.W.	P3-U-157
Van Ooteghem, Karen	P3-W-179
Van Rompaey, Vincent	P1-X-186, P3-X-187
van Schooten, Kimberley S	S.8iv, S.14ii, O.2.vii, P1-N- 106, P3-C-19, P3-F-43
Van Waelvelde, Hilde	P1-0-123
van Wegen, Erwin E H	P2-Q-149
Van Wouwe, Tom	P3-P-123
Vanhoestenberghe,	P3-W-175
Anne	
Vannozzi, Giuseppe	P2-E-29, P3-W-171
Vanswearingen,	P2-C-21
Jessie	
Varghese, Jessy P	P1-E-32, P2-E-34
Varrecchia, Tiwana	P3-Q-144
Vaughan-Graham, Julie	P2-Q-138
Vaugoyeau, Marianne	P3-J-81
Velisar, Anca	S.9ii
Ventre, Jodi P	P1-N-117
Verbecque, Evi	P1-X-186, P3-X-187
Verbeek, Sander	P1-C-23
Vercher, Jean-Louis	P3-M-98
Vereeck, Luc	P1-X-186, P3-X-187
Vereijken, Beatrix	P1-C-24, P1-M-98,
	P1-M-101, P1-W-175,
	P2-W-176, P3-C-18
Verghese, Joe	0.2.ii
Verheyen, Karen Vermette, Martin	P1-J-87, P3-J-82 P3-H-55
Verniba, Dmitry	P1-W-172
Verschueren,	P1-Q-134, P2-Q-135
Sabine M	11 Q 134,12 Q 133
Vervoort, Danique	P1-B-10
Vesley, Kristin	P3-N-106
Vette, Albert H	P1-W-184, P3-W-182
Vidal, Pierre-Paul	P2-H-55
Videnovic, Aleksandar	0.1.vii
Vijayan, Vinayak	P1-N-116
Vila-Chã, Nuno	P1-C-16
Villaseñor-Moreno,	P2-X-188
Julio C Villonouvo Philinno	D2 D 29
Villeneuve, Philippe	P3-D-28 P1-J-84
Vincent, Marina Vincent, Thomas	0.6.v
Viseux, Frédéric	P2-K-88, P3-D-28
Visscher, Rosa	P2-J-85
Vistamehr, Arian	P1-Q-137
Vitório, Rodrigo	S.2ii, P2-E-39, P2-Q-137, P3-E-29, P3-Q-148
Vlutters, Mark	P2-I-82
von Tscharner, Vinzenz	P2-B-9
Voss, Stephanie	P1-I-79, P1-I-80
Vos-van der Hulst, M.	Р1-К-95
Vrinceanu, Tudor	0.6.v
innecuna) rador	0.6.v
Vu, Thien Tuong Minh	
Vu, Thien Tuong Minh Vuillerme, Nicolas	P1-B-10
Vu, Thien Tuong Minh Vuillerme, Nicolas Vuillerot, Carole	P2-W-178
Vu, Thien Tuong Minh Vuillerme, Nicolas Vuillerot, Carole Waanders, Jeroen B	P2-W-178 P2-D-28
Vu, Thien Tuong Minh Vuillerme, Nicolas Vuillerot, Carole Waanders, Jeroen B Wade, Michael G	P2-W-178 P2-D-28 P2-F-43
Vu, Thien Tuong Minh Vuillerme, Nicolas Vuillerot, Carole Waanders, Jeroen B	P2-W-178 P2-D-28

NAME	POSTER NUMBER
Wang, Danping	P2-H-55
Wang, Jianqiao	P2-M-103
Wang, Shuaijie	0.2.v, P1-N-105, P1-N-118, P2-B-3
Wang, Ying	P3-Q-149
Wang, Yiru	0.2.v, P1-N-105, P1-N-118, P2-B-3
Wanner, Philipp	0.4.vii
Ware, Rob	P3-J-83
Warmerdam, Elke	P1-C-16, P1-Q-150, P3-C-14
Warnecke, Tobias	P1-C-16
Warren, William H	0.5.v
Watanabe, Hiroki	P1-0-125, P2-0-128, P2-U-156
Watanabe, Katsumi	P3-E-33, P3-V-170
Watanabe, Ryo	0.2.i
Webb, Jo	P3-N-118
Weber, Zachary	P3-W-176
Webster, Lyndell	P3-F-43
Weedon, Benjamin D	P2-H-78
Weerdesteyn, Vivian	S.3iv, O.4.iii, O.4.iv, P1-G- 50, P2-J-86, P3-B-10, P3-Q-146
Wei, Roger	P1-B-5
Weijer, Roel	P2-N-123, P3-C-22
Weiland, Sylvana	РЗ-Н-74
Weiss, Daniel	P2-E-37
Weiss, Michael	P1-C-16
Weiss, Patrice (Tamar)	P3-V-160
Weiss, Patrice L	P2-G-47
Weiss, Ram	0.2.iii
Weisser, Burkhard	P1-Q-148, P2-Q-142
Westphal, Ruben	0.5.iv
Whittier, Tyler T	P1-V-168, P2-H-70, P2-V-168
Wider, Chloe	P2-G-52
Wiegard, Anna	P1-C-16
Wiener Vacher,	P1-X-185
Sylvette Wigst Daniel	
Wiest, Daniel Wilken, Jason M	P2-B-9 P3-R-151
Wilkinson, Tim	P1-N-108
Willems, Patrick A	P3-H-57
Willems, Paul	P3-B-11
Williams, Andrew	P1-W-184
Williams, Britney S	P2-C-21
Williams, Mark A	P1-G-49
Wilson, Joanna	P1-E-40, P2-Q-151,
	P3-E-38
Wilson, Mark	P1-Q-152
Winberg, Taylor B Winkler, Jürgen	0.4.i
Wittich, Walter	0.1.viii, P1-B-7, P3-M-95 P1-Y-191, P2-K-89,
Wolf Claudia	P3-K-87 0.5.iv
Wolf, Claudia Wong, Irene S	P3-M-97
Wong, Jennifer S	P2-H-57, P3-0-121
Wong, Bonnie	P3-H-53
Woods, Taylor	P2-C-21
Wright, W. Geoffrey	P2-Q-152
Wright, Marvin	P2-M-99
Wrobel, Kathryn	P2-L-97
Wu, Amy R	Р2-Н-79
Wuehr, Max	0.3.i, P1-X-188, P2-Q-147, P2-X-186, P3-G-50,
	P3-Q-136
Wyers, Lore	P1-J-87, P3-J-82
Yahalom, Gilad	P1-L-96
Yakovenko, Sergiy	P3-D-23

NAME	POSTER NUMBER
Yalcinkaya, Gamze	P3-S-155
Yaldizli, Oezguer	P1-K-88
Yalla, Sai	P1-M-102
Yamada, Hiroki	P3-D-25
Yamada, Masa	P2-N-111
Yamada, Masahiro	P2-G-51, P2-N-113
Yamagiwa, Hideo	P1-H-66
Yamaguchi, Takeshi	P1-C-15, P1-W-181, P2-C-22
Yamamoto, Masahiko	P1-X-189, P3-W-183
Yamamoto, Yasutada	P2-Q-139
Yamanaka, Toshiaki	P2-X-187
Yamazaki, Masashi	P1-K-91, P1-O-125, P1-U-155, P2-O-128, P3-W-181
Yang, Shuo	P3-Q-149
Yang, Chieh-ling	P2-E-33
Yarnall, Alison J	P1-E-40, P1-G-51, P1-N- 107, P1-Q-151, P2-Q-151, P2-Q-153
Yasuda, Kazuhiro	P1-H-66, P3-K-92
Yeh, Li-Yun	P2-M-101
Yokoyama, Hikaru	P3-E-33, P3-V-170
Yonemoto, Ryuma	0.2.i
Yoo, Angela (Jaeeun)	P1-H-67, P1-K-90
Yoshida, Tomoe	P3-W-183
Young, William	S.14i, S.14.iii, P1-G-49, P1-Q-152, P1-Y-190, P2-G-44, P2-N-114
Youssim, laroslav	0.2.iii
Yu, Wanting	P1-W-180
Yu, Yawen	P2-X-190
Zaback, Martin	S.7ii, P1-B-11, P2-G-45
Zabetian, Cyrus P	0.1.iii
Zachery, Burkhardt	P3-H-61
Zagatto, Alessandro M	P2-V-157
Zampier, Vinicius C	P3-Q-148
Zandvoort, Coen	0.5.i, P3-E-39
Zeilig, Gabriel	S.1ii, O.4.ii, P2-N-107, P3-N-114
Zhang, Wei	P1-M-101
Zhao, Manfei	P1-I-78
Zheng, Yong-Ping	P2-K-94
Zhou, Junhong	P1-G-52, P1-O-121, P1-W-180, P2-F-43, P2-L- 95, P3-E-36, P3-H-53, P3-Q-149
Zhou, Zhi	0.1.i
Zhou, Yuhan	S.14.iv
Zhuk, Daria	P2-H-72
Zia Ur Rehman, Rana	P1-Q-150
Zijdewind, Inge	P2-C-20
Zijlstra, Wiebren	0.2.vii, P2-N-115, P3-B-11
Zisberg, Anna	P2-N-105
Zukowski, Lisa A	P2-G-48
Zult, Tjerk	P1-N-119

NOTES

POSTER SESSION INFO

POSTER SESSION 1: MONDAY 1ST JULY

A - Activity monitoring

P1-A-1 Monitoring walking activity with wearable technology in rural-dwelling older adults in Tanzania: A feasibility study nested within a frailty prevalence study

Presenter: Silvia Del Din

Silvia Del Din¹, Emma Grace Lewis², William Gray², Harry Collin¹, John Kissima³, Lynn Rochester⁴, Catherine Dotchin², Sarah Urasa⁵, Richard Walker² ¹Newcastle University, ²Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, ³Hai District Hospital, ⁴Institute of Neuroscience, Newcastle University, ⁵Kilimajaro Christian Medical Centre

P1-A-2 The impact of freezing of gait in daily life: A wearable sensors approach

Presenter: Martina Mancini

Martina Mancini¹, Vrutangkumar Shah¹, Carolin Curtze², Samuel Stuart¹, Mahmoud El-Gohary³, James McNames⁴, Fay Horak¹, John Nutt¹ ¹Oregon Health & Science University, ²University of Nebraska

Oregon Health & Science University, "University of Neoraska Omaha, ³APDM, ⁴Portland State University

B - Adaptation, learning, plasticity and compensation

P1-B-3 Targeted familiarization based on user feedback and motor control principles to optimize positive adaptation strategies for learning to walk with a passive load-bearing exoskeleton: A feasibility study
Presenter: Craig Tokuno Craig Tokuno¹, Louis-Solal Giboin², Andreas Kramer², Markus Gruber² ¹Brock University, ²University of Konstanz

Presenter: Laurent Bouyer

Laurent Bouyer¹, Krista Best², Thomas Karakolis³, Gabriel Diamond-Ouellette⁴, Etienne Lamoureux⁴, Kurt Modie⁵

¹Université Laval, ²CIRRIS-Universite Laval, ³Defence Research and Development Canada, ⁴Mawashi Science & Technology, ⁵Defence Science and Technology Australia

P1-B-4 The moving platform illusion in older adults: Effects of the duration of adaptation to a swayreferenced environment on perceptual delays and postural aftereffects

Presenter: Mihalis Doumas

Mihalis Doumas¹, Laura Coulter¹ ¹Queen's University Belfast

┥ ToC

Р1-В-5	Foot speed perception during split-belt treadmill		
adaptation in adults with Parkinson's disease			
Presente	er: Dorelle Hinton		

Dorelle Hinton¹, Roger Wei¹, David Conradsson², Caroline Paquette¹

¹McGill University, ²Karolinska Institutet

P1-B-6 Influence of smartphone use while walking: The relationship between obstacle avoidance and adaptive walking caused by smartphone use

Presenter: Sato Ren

Sato Ren¹, Kotaro Shimizu¹, Koyuki Nishikawa², Yuriko Kihara³, Kazunari Itou⁴, Keita Tai⁵, Taketo Furuna¹

¹Sapporo Medical University, ²Goryokaku Hospital, ³Japan Health Care College, ⁴Asahikawa Rehabilitation Hospital, ⁵Houseikai Motomachi Himawari Clinic

P1-B-7 Gait adaptations in response to perturbation treadmill training in Parkinson's disease: Time-course, sustainability and transfer

Presenter: Simon Steib

Simon Steib¹, Sarah Klamroth¹, Gassner Heiko¹, Cristian Pasluosta¹, Bjoern Eskofier¹, Juergen Winkler¹, Jochen Klucken¹, Klaus Pfeifer¹

¹Friedrich-Alexander University (FAU) Erlangen-Nürnberg

P1-B-8 Task-specific modulation of the soleus H-reflex following a single balance training session

P1-B-9 Large errors upon introduction vs. removal of the training environment have distinct effect on the generalization of locomotor adaptation

Presenter: **Gelsy Torres-Oviedo Gelsy Torres-Oviedo¹**, **Digna de Kam¹**, **Wouter Staring²** ¹University of Pittsburgh, ²Radboud University Medical Center

P1-B-10 Changes in muscle activation patterns underlie split-belt gait adaptation

Presenter: **Danique Vervoort**

Danique Vervoort¹, Rob den Otter¹, Tom Buurke¹, Nicolas Vuillerme², Tibor Hortobágyi¹, Claudine Lamoth¹

¹University of Groningen, University Medical Center Groningen, ²University Grenoble-Alpes

P1-B-11 Prolonged exposure to height-related threat: Adaptation and retention of standing balance outcomes Presenter: Martin Zaback

Martin Zaback¹, Minh Luu¹, Allan Adkin², Mark Carpenter¹ ¹University of British Columbia, ²Brock University

C - Aging

P1-C-12 Two-year change in gait variability in community-living older adults

Presenter: Bård Bogen

Bård Bogen¹, Mona Aaslund¹, Anette Ranhoff¹, Rolf Moe-Nilssen¹ ¹University of Bergen

P1-C-13 The effects of mechanical and cognitive

constraints on beam walking in older adults

Presenter: Andréia Abud da Silva Costa

Andréia Abud da Silva Costa¹, Tibor Hortobágyi², Andrew Sawers³, Renato Moraes⁴

¹Ribeirão Preto School of Medicine - FMRP-USP, ²University Medical Center Groningen, ³The University of Illinois at Chicago, ⁴University of São Paulo

P1-C-14 Low function based on spatio-temporal gait variables and disability

Presenter: Takehiko Doi

Takehiko Doi¹, Sho Nakakubo¹, Kota Tsutsumimoto¹, Minji Kim¹, Satoshi Kurita¹, Hideaki Ishii¹, Hiroyuki Shimada¹

¹National Center for Geriatrics and Gerontology

P1-C-15 Age-related differences in lower limb joint moments during turning gait Presenter: Yuto Fukuda Yuto Fukuda¹, Takeshi Yamaguchi¹ ¹Tohoku University

P1-C-16 "COgnitive and Motor interaction in Older populatioNs (ComOn)" - A prospective multi-center study for quantitative evaluation of treatment effectiveness in 1000 geriatric patients with cognitive and motor deficits

Presenter: Johanna Geritz

Johanna Geritz¹, Sara Maetzold¹, Andrea Pilotto², Marta Corrà³, Mariana Morscovich⁴, Maria Rizzetti⁵, Barbara Borroni², Alessandro Padovani², Annekathrin Alpes¹, Corinna Bang¹, Igor Barcellos⁴, Ralf Baron¹,

Thorsten Bartsch¹, Jos Becktepe¹, Daniela Berg¹, Lu Bergeest¹, Philipp Bergmann^{1,} Raquel Bouca-Machado⁶, Michael Dre⁷, Christin Ehlers¹, Morad Elshehabi¹, Susan Farahmandi¹, Andre Franke¹, Anja Friederich¹, Corinna Geisler¹, Janne Gierthmuhlen¹, Oliver Granert¹, Sebastian Heinzel¹, Maren Heller¹, Markus Hobert¹, Marc Hofmann⁸, Philipp Hullemann¹, Bjorn Jemlich⁹, Laura Kerkmann¹, Stephanie Knupfer¹, Katharina Krause¹, Maximilian Kress¹, Sonja Krupp¹⁰, Jennifer Kudelka¹, Gregor Kuhlenbaumer¹, Roland Kurth¹¹, Frank Leypoldt¹, Corina Maetzler¹, Luis Maia¹², Patricia Neumann¹³, Katharina Niemann¹, Christian Ortlieb¹, Steffan Paschen¹, Hoang Pham¹, Thomas Puehler¹⁴, Franziska Radloff¹, Christian Riedel¹, Simone Sablowsky¹, Elena Schanz¹, Linda Schebesta¹, Andreas Schicketmuller⁸, Simone Studt¹¹, Martina Thieves⁹, Sebastian Ullrich⁹, Paul Urban¹³, Nuno Vila-Cha¹², Elke Warmerdam¹, Tobias Warnecke¹⁵, Michael Weiss¹, Anna Wiegard¹, Clint Hansen¹, Walter Maetzler¹

¹Christian-Allbrechts-University of Kiel, ²University of Brescia, ³Centro Hospitalar do Porto, ⁴Federal University of Paraná, ⁵FERB ONLUS-S Isidoro Hospital, ⁶University of Lisbon, ⁷Ludwig-Maximillians Universität München, ⁸Hasomed GmbH, ⁹ Stadtisches Krankenhaus Kiel, ¹⁰Red Cross Hospital Geriatric Centre, ¹¹ZIP, Centre for Integrative Psychiatry, ¹²Centro Hospitalar do Porto, ¹³Asklepios Klinik Barmbek, ¹⁴Universitätsklinikum Schleswig-Holstein Campus Kiel, ¹⁵University Hospital Muenster

P1-C-17 Specific gait measures predict cognitive decline in highly educated older adults

Presenter: Jeffrey Hausdorff

Elissa Ash¹, Tali Ben Porat², Odelia Elkana¹, Natalie Ganz¹, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²Academic College of Tel Aviv-Yaffo

P1-C-18 Medical, sensorimotor and cognitive factors associated with gait variability: a longitudinal population-based study

Presenter: Oshadi Jayakody

Oshadi Jayakody¹, Monique Breslin¹, Velandai Srikanth², Michele Callisaya¹

¹University of Tasmania, ²Peninsula Health, Monash University

P1-C-19 Power spectral changes in ankle plantar flexors in people with Parkinson's during walking - implications for gait?

Presenter: Annette Pantall

Annette Pantall¹, Othello Cope¹, Shu En Lee¹, Silvia Del Din¹, Lisa Alcock¹ ¹Newcastle University

P1-C-20 Fat mass index and the performance of older people in the 6-minute walking test

Presenter: Tatiane Pontes

Tatiane Pontes¹, Fernanda Pessanha², Renato Freire Greeves², Richard Jones¹ Júnior¹, Natália Alves², Karina Pfrimer², Priscila Fassini², ¹University of Salford, ²Army Personnel Research Capability Eduardo Ferriolli²

P1-D-26 Virtual reality training affects joint angle ¹University of São Paulo, ²Faculty of Medicine of Ribeirão Preto strategies which correlate with safer real-world obstacle P1-C-21 Postural stability during reaching-to-grasping crossing

while standing in young adults and older adults with and without a history of falls

Presenter: Natalia Rinaldi

Natalia Rinaldi¹, Renato Moraes² ¹Federal University of Espirito Santo, ²University of São Paulo

P1-C-22 Changes in Achilles tendon reflex strength during quiet standing with age

Presenter: Margot Schmidt

Margot Schmidt¹, Robyn Mildren¹, Gregg Eschelmuller¹, Jean-Sebastien Blouin¹, Mark Carpenter¹, J. Timothy Inalis¹

¹University of British Columbia

P1-C-23 Biomechanical balance control in older adults: A systematic review and meta-analysis

Presenter: Joke Spildooren Pieter Meyns¹, Lotte Palmers¹, Sander Verbeek¹, Joke Spildooren¹ ¹Hasselt University

P1-C-24 PreventIT feasibility RCT: Improving physical function in older age by changing people's habits in daily life

Presenter: Kristin Taraldsen

Kristin Taraldsen¹, A.Stefanie Mikolaizak², Andrea Maier³, Elisabeth Boulton⁴, Kamiar Aminian⁵, Clemens Becker², Sabato Mellone⁶, Chris Todd⁴, Mirjam Pijnappels³, Beatrix Vereijken¹, Jorunn Helbostad¹ ¹Norwegian University of Science and Technology, ²Robert-Bosch-Krankenhaus, ³Vrije Universiteit Amsterdam, ⁴University of Manchester, ⁵Ecole Polytechnique Fédérale de Lausanne (EPFL), ⁶University of Bologna

ToC

82

D -	Bic	om	ecl	har	nics
			CCI	Iu	IICS

P1-D-25 The role of limb length and stature in the transition from walking to running

Presenter: Niamh Gill

Niamh Gill¹, Kristen Hollands¹, Anmin Liu¹, Dale Walker¹, Andrew Roberts², Thomas O'Leary², Julie

Presenter: Chanel LoJacono

Chanel LoJacono¹, Michael Kress¹, Christopher Rhea¹ ¹University of North Carolina, Greensboro

P1-D-27 Excessive arm swings and asymmetric walking lead to more variability in the trunk kinematics Presenter: Cézar Mezher

Cézar Mezher¹, Allen Hill¹, Tarique Siragy¹, Julie Nantel¹ ¹University of Ottawa

P1-D-28 Plantar pressures and muscle activity of normal and pes planus foot postures wearing different footwear during treadmill walking

Presenter: Katrina Protopapas

Katrina Protopapas¹, Stephen Perry¹ ¹Wilfrid Laurier University

P1-D-29 Sagittal balance control during perturbed walking

Presenter: Maud van den Bogaart Maud van den Bogaart¹, Sjoerd Bruijn², Jaap van Dieën², Pieter Meyns³ ¹UHasselt, ²Vrije Universiteit Amsterdam, ³Hasselt University

E - Brain imaging/activation during posture and gait

P1-E-30 Mapping the cortical representation of lowerlimb muscles using transcranial magnetic stimulation

Presenter: Jennifer Davies Jennifer Davies¹ ¹Cardiff University

P1-E-31 Reduced weight-shifting skills during singleand dual-task conditions are accompanied by altered neural activation in ageing

Presenter: Veerle de Rond

Veerle de Rond¹, Diego Orcioli-Silva², Lynn Rochester³, Jean-Jacques Orban de Xivry¹, Annette Pantall⁴, Alice Nieuwboer¹

¹KU Leuven, ²São Paulo State University (UNESP), ³Institute of Neuroscience, Newcastle University, ⁴Newcastle University

P1-E-32 Postural state modulation of reactive balance control

Presenter: Mark Laylor

Mark Laylor¹, Paula Polastri², Jessy Varghese¹, William McIlroy¹

¹University of Waterloo, ²São Paulo State University (UNESP)

P1-E-33 Functional interplay between body sway and parieto-premotor network revealed by somatosensory potentials evoked by foot sole stimulation and microneurography

Presenter: Laurence Mouchnino

Laurence Mouchnino¹, Marie Fabre¹, Edith Ribot-Ciscar¹, Rochelle Ackerley¹, Jean-Marc Aimonetti¹, Pascale Chavet¹, Jean Blouin¹, Martin Simoneau² ¹Aix Marseille Université, ²Université Laval

P1-E-34 An exploratory in vivo voxel-based PET analysis of cholinergic correlates of postural sway variability in Parkinson disease

Presenter: Martijn Muller

Martijn Muller¹, Uros Marusic², Prabesh Kanel¹, Nicolaas Bohnen¹

¹University of Michigan, ²Science and Research Centre Koper

P1-E-35 Neural correlates of body dynamics

Presenter: Nicholas Murray

Nicholas Murray¹, Gustavo Sandri Heidner¹, Caitlin O'Connell¹, Chris Mizelle¹, Zac Domire¹ ¹East Carolina University

P1-E-36 Evidence for an alternate neural control in freezing of gait during complex walking Presenter: Caroline Paquette Trina Mitchell¹, Alexandra Potvin-Desrochers¹, Anne-

Louise Lafontaine¹, Oury Monchi², Alexander Thiel¹, Caroline Paquette¹ ¹McGill University, ²University of Calgary **P1-E-37** A brainstem, subcortical and cortical network for dynamic balance control in healthy older adults Presenter: Elizabeth Pasman

Elizabeth Pasman¹, Martin McKeown¹, Saurabh Garg¹, Taylor Cleworth², Bastiaan Bloem³, J Timothy Inglis¹, Mark Carpenter¹

¹University of British Columbia, ²University of Waterloo, ³Radboud University Medical Center

P1-E-38 Functional near-infrared imaging of the temporo-parietal junction during vestibular rotational stimulation

Presenter: Patrick Sparto

Patrick Sparto¹, Theodore Huppert¹, Helmet Karim¹, Joseph Furman¹ ¹University of Pittsburgh

P1-E-39 Understanding the hemodynamic response and sensory contribution to automatic postural control Presenter: Gabrielle St-Amant Gabrielle St-Amant¹, Tabassum Rahman¹, Nadia Polskaia¹, Sarah Fraser¹, Yves Lajoie¹ ¹University of Ottawa

P1-E-40 Structural neural correlates of independent gait characteristics in Parkinson's disease

Presenter: Joanna Wilson

Joanna Wilson¹, Brook Galna¹, Sue Lord², Alison Yarnall¹, Rachael Lawson¹, Gordon Duncan³, Tien Khoo⁴, David Burn¹, Lynn Rochester⁵, John-Paul Taylor¹ ¹Newcastle University, ²Auckland University of Technology, ³University of Edinburgh, ⁴Griffith University, ⁵Institute of Neuroscience, Newcastle University

F - Cognitive impairments

P1-F-41 Step-length changes caused by a dual-task test among individuals undergoing memory assessment - a pilot study

Presenter: Anna Cristina Åberg

Anna Cristina Åberg¹, Fredrik Tinmark², Lars Berglund¹, Kjartan Halvorsen¹, Vilmantas Giedraitis¹

¹Uppsala University, ²The Swedish School of Sport and Health Sciences, GIH P1-F-42 Comparison in postural sway between healthy control and mild cognitive impaired group with dual tasks

Presenter: Junggil Kim

Junggil Kim¹, Jinsoo Lee¹, Jeongwoo Seo¹, Jinseong Choi¹, Gyerae Tack¹ ¹Konkuk University

P1-F-43 Is gait variability a biomarker of neurodegenerative disorders?

Presenter: Manuel Montero-Odasso

Manuel Montero Odasso¹, Yanina Sarquis-Adamson¹, Natalie Ravid², Quincy Almeida³, Frederico Pieruccini-Faria¹, Kerry Howell², Richard Camicioli² ¹University of Western Ontario, ²University of Alberta, ³Wilfrid Laurier University

P1-F-44 The association between spatial navigation and physical function in memory clinic patients Presenter: **Gro G. Tangen**

Gro Tangen¹, Anne-Brita Knapskog², Elisabeth Telenius¹, Geir Selbæk¹, Kristin Taraldsen³ ¹Norwegian National Advisory Unit on Ageing and Health, ²Oslo University Hospital, ³Norwegian University of Science and Technology

G - Cognitive, attentional, and emotional influences

P1-G-45 Effects of concussion history on centre of pressure during static dual-tasking in collegiate athletes

Presenter: Kelsey Bryk

Kelsey Bryk¹, Jaclyn Caccese¹, Katherine Hunzinger¹, Thomas Buckley¹ ¹University of Delaware

P1-G-46 Does it matter where you look during obstacle crossing?

Presenter: HyeYoung Cho

HyeYoung Cho¹, Nathaniel Romine¹, Fabio Barbieri², Shirley Rietdyk¹

¹Purdue University, ²São Paulo State University (UNESP)

ToC 84

P1-G-47 The influence of social anxiety on balance and walking task assessment in older women Presenter: **Diego Orcioli-Silva**

Diego Orcioli-Silva¹, Elizabeth Pasman², Lilian Gobbi¹, Mark Beauchamp², Mark Carpenter²

¹São Paulo State University (UNESP), ²University of British Columbia

P1-G-48 Lateropulsion is common after right hemisphere stroke, strongly related to spatial neglect, and the primary cause of mobility limitation

Presenter: Dominic Pérennou

Dominic Pérennou¹, Shenhao Dai², Emmauelle Clarac², Andréa Kistner², Patrice Davoine², Anne Chripin², Marie Jaeger², Olivier Detante², Marc Hommel², Monica Baciu², Céline Piscicelli¹

¹University Hospital Grenoble-Alpes, ²Grenoble Alpes University Hospital

P1-G-49 Using virtual reality to safely increase mobilityrelated anxiety when turning in simulated environments Presenter: **Tiphanie Raffegeau**

Tiphanie Raffegeau¹, Mindie Clark¹, Bradley Fawver¹, William Young², Mark Williams¹, Keith Lohse¹, Peter Fino¹

¹University of Utah, ²Brunel University

P1-G-50 Does postural threat influence the StartReact effect in a lateral stepping task?

Presenter: Vivian Weerdesteyn

Vivian Weerdesteyn¹, Milou Coppens¹, Tim Inglis², Mark Carpenter²

¹Radboud University Medical Center, ²University of British Columbia

P1-G-51 Dual task gait interference in Parkinson's disease: The impact of baseline cognitive capacity

Presenter: Rosie Morris

Rosie Morris¹, Ellen Lirani-Silva², Rachael Lawson³, Alison Yarnall³, Brook Galna³, Sue Lord⁴, Lynn Rochester⁵

¹Oregon Health & Science University, ²São Paulo State University (UNESP), ³Newcastle University, ⁴Auckland University of Technology, ⁵Institute of Neuroscience, Newcastle University

P1-G-52 The multiscale dynamics of resting-state brain activity is associated with the performance of dual task standing postural control in older adults

Presenter: Junhong Zhou

Junhong Zhou¹, Laura Dubreuil Vall², Brad Manor¹, Giulio Ruffini²

¹Harvard Medical School, ²Neuroelectrics

H - Coordination of posture and gait

P1-H-53 Combined diabetes and arthritis are associated with declined gait speed

Presenter: Bader Algahtani

Bader Algahtani¹, Ageel Alenazi¹, Mohammed Alshehri² ¹Prince Sattam Bin Abdualziz University, ²Jazan University

P1-H-54 Healthy young adults use vision for postural control similarly at low and high virtual heights

Presenter: Eric Anson

Eric Anson¹, Nicole Kuznetsov¹, Raul Rodriguez¹, Kyle Critelli¹, Benjamin Crane¹ ¹University of Rochester

P1-H-55 Body sway is mediated by vestibular cortical dominance

Presenter: Adolfo Bronstein

Adolfo Bronstein¹, Patricia Castro¹, Diego Kaski², Hussein Al-Fazly¹, Deniz Ak¹, Liam Oktay¹, Qadeer Arshad¹ ¹Imperial College London, ²University College London

P1-H-56 Postural balance at children survived after posterior fossa tumor

Presenter: Anna Dreneva

Dmitry Skvortsov¹, Anna Dreneva², Vladimir Kasatkin³, Alexander Karelin³

¹Government University, ²Rehabilitation center "Russcoe Pole", ³Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology

P1-H-57 Full body responses in visually perturbed quiet stance

Presenter: David Engel

David Engel¹, Adrian Schütz¹, Frank Bremmer¹ ¹*Philipps-Universität Marburg*

P1-H-58 Balance mechanisms differ across cadences on a self-paced treadmill

Presenter: Tyler Fettrow

Tyler Fettrow¹, David Grenet¹, Hendrik Reimann¹, Ian Sotnek¹, Elizabeth Kaye¹, Maelyn Arcodia¹, John Jeka¹ ¹University of Delaware

P1-H-59 The ability to switch from a trail limb avoidance to a lead limb accommodation strategy

Presenter: Félix Fiset Félix Fiset¹, Bradford McFadyen¹ ¹Université Laval

P1-H-60 Specificity of trunk postural responses to threedimensional surface stimuli

Presenter: Adam Goodworth

Adam Goodworth¹, Cody Barrett², Jonathan Rylander², Brian Garner²

¹University of Hartford, ²Baylor University

P1-H-61 The effects of intensive balance training in individuals with chronic spinal cord injury on quiet standing centre of pressure measures

Presenter: Olinda Habib Perez

Olinda Habib Perez¹, Janelle Unger², Katherine Chan¹, Jae Lee², Kei Masani², Kristin Musselman² ¹Toronto Rehabilitation Institute, ²University of Toronto

P1-H-62 Arm swing and gait symmetry affects gait stability and interlimb coordination

Presenter: Allen Hill Allen Hill¹, Julie Nantel¹ ¹University of Ottawa

P1-H-63 Kinesiological study for normal walking gait on irregular surface

Presenter: Kenta Igarashi Kenta Igarashi¹, Koichi Koganezawa¹ ¹Tohoku University

P1-H-64 Effects of Dance for Parkinson's on gait and dual-ask gait in Parkinson's disease assessed using Vicon 3D-motion capture

Presenter: Graham Kerr

Nadeesha Kalyani¹, Karen Sullivan¹, Gene Moyle¹, Sandy Brauer², Erica Rose Jeffrey³, Graham Kerr¹ ¹Queensland University of Technology, ²University of

Oueensland, ³Dance for Parkinson's Australia and Oueenslan Ballet

P1-H-65 Gross and fine balance control during walking in stroke patients and healthy controls

Presenter: Noel Keijsers Noel Keijsers¹, Yara Luijten¹, Bart Nienhuis¹ ¹Sint Maartenskliniek

P1-H-66 Effects of freezing joint degrees of freedom or dynamic postural balancing

Presenter: Kentaro Kodama

Kentaro Kodama¹, Kazuhiro Yasuda², Hideo Yamagiwa ¹Kanagawa University, ²Waseda University, ³Tokyo Metropolit Tobu Medical Center

P1-H-67 Ankle and hip joint coordination during quiet standing for individuals with incomplete spinal cord injury

Presenter: Jae Lee

Jae Lee¹, Angela (Jaeeun) Yoo², Katherine Chan³, Janelle Unger¹, Kristin Musselman¹, Kei Masani¹ ¹University of Toronto, ²Institute of Biomaterials and Biomedia Engineering, University of Toronto, ³Toronto Rehabilitation Institute

P1-H-68 Variability of gait, bilateral coordination in unilateral vestibular loss patients

Presenter: Hwan Ho Lee

Hwan Ho Lee¹ ¹Kosin University College of Medicine, Korea

P1-H-69 Walking through an aperture while penetratii from the paretic side reduces the rate of collision for stroke individuals

Presenter: Daisuke Muroi

Daisuke Muroi¹, Yutaro Saito¹, Aki Koyake¹, Takahiro Hiauchi²

¹Kameda Medical Center, ²Tokyo Metropolitan University

P1-H-70 Feasibility of visual cues to promote walking turns in Parkinson's disease

Presenter: **Rebecca Reed-Jones**

Rebecca Reed-Jones¹, Tyler Baker¹, Jenna Pitman² ¹University of Prince Edward Island, ²University of Guelph

- ToC

86

	Haste makes waste: on the trade-off between speed and target-stepping accuracy
Melvyn I	r: Melvyn Roerdink Roerdink ¹ , Daphne Geerse ¹ , Lieke Peper ¹ versiteit Amsterdam
training	Influence of body weight supported treadmill parameters on muscle coordination in etic walking
Bryant S Neptune Kautz ¹ ¹ Ralph H at Austin,	T: Bryant Seamon eamon ¹ , Shraddha Srivastava ¹ , Richard e ² , Lindsay Perry ³ , Carolynn Patten ⁴ , Steven Johnson VA Medical Center, ² University of Texas ³ University of St. Augustine for Health Sciences, y of California Davis School of Medicine
P1-H-73 avoidan	Comparative characteristics of obstacle ce strategy in young and older adults in various conditions
Kotaro S Higuchi ³ ¹ Sapporo	r: Kotaro Shimizu himizu¹, Yuriko Kihara², Koki Iwata¹, Takahiro ², Taketo Furuna¹ Medical University, ²Japan Health Care College, pent of Health Promotion Science, Tokyo Metropolitar, ,
	Does discrete versus cyclic full body reaching luence hip and spine excursions?
James Th	r: James Thomas nomas ¹ Commonwealth University
I - Deve	elopment of posture and gait
P1-I-75	The development of running in children
Margit B Daffertsl	r: Margit Bach ach ¹ , Francesco Menna ² , Andreas hofer ¹ , Nadia Dominici ¹ versiteit Amsterdam, ² University of Rome Tor Vergata

P1-I-76 Evaluation of balance in adolescent idiopathic toe walkers

Presenter: Marybeth Grant-Beuttler Marybeth Grant-Beuttler¹, R. Caprice Hollandsworth¹, Shweta Chheda¹, Richard Beuttler¹, Afshin Aminian², Rahul Soangra¹

¹Chapman University, ²Children's Hospital of Orange County

P1-I-77 Reactive and anticipatory postural response mechanisms during continuous platform oscillation in children and adolescents

Presenter: **Richard Mills Richard Mills¹, Heidi Sveistrup²** ¹Manchester Metropolitan University, ²University of Ottawa

P1-I-78 Children's walking in complex environments: One step at a time?

Presenter: Rachel Mowbray Rachel Mowbray¹, Janna Gottwald², Manfei Zhao¹, Anthony Atkinson¹, Dorothy Cowie¹ ¹Durham University, ²Uppsala University

P1-I-79 Inertial sensor based normative postural sway parameters in typically developing children and young adults

Presenter: Joan Ann O'Keefe Joan O'Keefe¹, Alexandra Palmer¹, Rachel Tracy¹, Stephanie Voss¹, Medha Parulekar¹, Caitlin Bailey¹, Nicollette Purcell¹, Elizabeth Berry-Kravis¹ ¹Rush University Medical Center

P1-I-80 Inertial sensor based normative spatiotemporal gait and Timed Up and Go parameters in typically developing children and young adults

Presenter: Joan Ann O'Keefe

Joan O'Keefe¹, Stephanie Voss¹, Rachel Tracy¹, Alexandra Palmer¹, Medha Parulekar¹, Nicollette Purcell¹, Marie Fefferman¹, Elizabeth Berry-Kravis¹ ¹Rush University Medical Center

P1-I-81 Minimum Predicted Distance: Applying a common metric to collision avoidance strategies between typically developing children and adult walkers

Presenter: Victoria Rapos Victoria Rapos¹, Michael Cinelli¹, Natalie Snyder¹, Armel Crétual², Anne-Hélène Olivier² ¹Wilfrid Laurier University, ²University of Rennes / Inria

P1-I-82 Experimental study of biomechanics of "military

crawl" locomotion, pilot study Presenter: **Dmitry Skvortsov**

Dmitry Skvortsov¹, Alina Aisenshtein², Vladimir Kasatkin³, Anatoliy Shipilov², Victor Anisimov² ¹Government University, ²Rehabilitation center "Russcoe Pole", ³Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology

J - Developmental disorders

P1-J-83 Effects of saccadic eye movements on postural stabilization in dyslexic children

Presenter: Jose Barela

Jose Barela¹, Newton Tesima², Vitor Amaral², Ana Barela²

¹São Paulo State University (UNESP), ²Cruzeiro do Sul University

P1-J-84 Effects of neutralization of symmetry of the Maxwell spot on postural control in children with dyslexia. Clinical cases report

Presenter: Marc Janin

Emmanuelle Pivron Braquet¹, Marc Janin², Alix Couvrat³, Claire Carraurer³, Lucie Pirodeau³, Marina Vincent³, Marion Miral³, Sophie Richer de Forge³, Tipahaine Dreillard³, Valerie Riviere³, Benoit Maille³, Nicolas Imbert³, Briskmann Didier³

¹PODOLOGUE, ²Université de Pau et des pays L'adour, ³Krys Poitiers

P1-J-85 The Kids-BESTest of postural control predicts gross motor coordination in primary school children with and without coordination difficulties

Presenter: Leanne M Johnston

Leanne Johnston¹, Gemma Allinson¹, Breanna Raatz¹, Rosalee Dewar¹, Sally Hannah¹ ¹University of Queensland

P1-J-86 Developmental Coordination Disorder co-occurs at high rates among children and adolescents with Autism Spectrum Disorder

Presenter: Haylie Miller

Haylie Miller¹, Gabriela Sherrod², Priscila Caçola³ ¹University of North Texas Health Science Center, ²University of Alabama, Birmingham, ³University of Texas at Arlington

P1-J-87 Effect of orthopaedic shoes and orthopaedic insoles on gait in patients with Dravet syndrome

Presenter: Lore Wyers

Lore Wyers¹, Karen Verheyen¹, Berten Ceulemans², An-Sofie Schoonjans¹, Kaat Desloovere³, Patricia Van de Walle¹, Ann Hallemans¹ ¹University of Antwerp, ²Antwerp University Hospital, ³KU Leuven

K - Devices to improve posture and gait

P1-K-88 Improvements in balance control for multiple sclerosis patients with vibro-tactile biofeedback of trunk sway

Presenter: John Allum

John Allum¹, Christel Schouenborg², Bettina Fischer-Barnicol¹, Venessa Haller¹, Nathanael Lutz², Heiko Rust³, Oezguer Yaldizli¹

¹University Hospital Basel, ²Bern University of Applied Sciences, ³Charing Cross Hospital

P1-K-89 Avoiding 3D holographic obstacles: Does it differ from negotiating real obstacles?

Presenter: Bert Coolen

Bert Coolen¹, Daphne Geerse¹, Melvyn Roerdink¹ ¹Vrije Universiteit Amsterdam

P1-K-90 Evaluating the efficacy of a novel therapeutic tool for standing balance after spinal cord injury: A case series

Presenter: David Houston

David Houston¹, Jae Lee², Emerson Grabke³, Angela (Jaeeun) Yoo³, Kai-Lon Fok³, Janelle Unger², Kei Masani², Kristin Musselman²

¹Rehabilitation Sciences Institute, University of Toronto, ²University of Toronto, ³Institute of Biomaterials and Biomedical Engineering, University of Toronto

P1-K-91 Design improvement and clinical assessment of personal standing mobility Qolo for voluntary sit-tostand posture transition of persons with thoracic level spinal cord injury

Presenter: Hideki Kadone

Hideki Kadone¹, Yukiyo Shimizu¹, Shigeki Kubota¹, Diego Paez¹, Yasushi Hada¹, Masashi Yamazaki¹, Kenji Suzuki¹

¹University of Tsukuba

P1-K-92 Effects of sensory augmentation activation thresholds on balance performance in people with vestibular disorders

Presenter: Kathleen Sienko

Tian Bao¹, Catherine Kinnaird¹, Wendy Carender¹,

┥ ToC

88

Kathleen Sienko¹

¹University of Michigan

P1-K-93 Staying UpRight in Parkinson's disease: A novel postural intervention

Presenter: Samuel Stuart

Samuel Stuart¹, Alan Godfrey², Lynn Rochester³, Fay Horak¹, Martina Mancini¹

¹Oregon Health & Science University, ²Northumbria University, ³Institute of Neuroscience, Newcastle University

P1-K-94 Gait variability decreases with use of carbon fiber footplates in children with idiopathic toe walking

Presenter: Srikant Vallabhajosula Srikant Vallabhajosula¹, Melissa Scales¹ ¹Elon University

P1-K-95 Treadmill training in a virtual environment improves gait and balance in patients with incomplete spinal cord injury

Presenter: Rosanne van Dijsseldonk

Rosanne van Dijsseldonk¹, L.A.F. de Jong², B.E. Groen², M. Vos-van der Hulst², A.C.H. Geurts³, N.L.W. Keijsers² ¹Radboudumc & Sint Maartenskliniek, ²Sint Maartenskliniek, ³Radboud University Medical Center

L - Effect of medication on posture and gait

P1-L-96 Botulinum toxin injection to the upper limb may indirectly improve gait in patients with post-stroke spasticity- an open-label prospective pilot study

Presenter: Shani Kimel Naor

Shani Kimel Naor¹, Oren Cohen², Elizabeta Shprits³, Sharon Hassin-Baer¹, Yael Dotan-Marom¹, Gilad Yahalom¹, Oleg Marzeliak¹, Lilach Ephraty¹, Hanna Strauss¹, Rivka Inzelberg⁴, Meir Plotnik¹

¹Sheba Medical Center, ²Tel-Aviv University, ³Technion, Technological Institute of Israel, ⁴Tel Aviv University

P1-L-97 Evaluation of adult cerebral palsy gait with spasticity of gluteus medius anterior fibers before and after local treatment with botulinum toxin

Presenter: **Philippe Thoumie Philippe Thoumie¹, Florence Babany¹** ¹Hospital Rothschild APHP Sorbonne University

M - Exercise and physical activity

P1-M-98 Evaluation of measurement properties of the instrumented and repeated Timed Up and Go (5iTUG)

Presenter: Ronny Bergquist

Ronny Bergquist¹, Corinna Nerz², Kristin Taraldsen¹, Clemens Becker², Sabato Mellone³, Beatrix Vereijken¹, Jorunn Helbostad¹, Stefanie Mikolaizak²

¹Norwegian University of Science and Technology, ²Robert-Bosch-Krankenhaus, ³University of Bologna

P1-M-99 Controlling the uncontrollable - perceptions of balance in people with Parkinson's disease

Presenter: Hanna Johansson

Hanna Johansson¹, Erika Franzén¹, Kirsti Skavberg Roaldsen¹, Maria Hagströmer¹, Breiffni Leavy¹ ¹Karolinska Institutet

P1-M-100 Athletes adopt different control strategies compared to non-athletes with increased postural demands

Presenter: Jenna Pitman

Jenna Pitman¹, Rhianna Malcolm¹, David Shulman¹, Becky Breau¹, Michael Cinelli², Lori Ann Vallis¹ ¹University of Guelph, ²Wilfrid Laurier University

P1-M-101 Could lifestyle-integrated exercise interventions change physical activity behavior of young older adults?

Presenter: Gaëlle Prigent

Gaelle Prigent¹, Anisoara Ionescu¹, Wei Zhang¹, Kristin Taraldsen², Beatrix Vereijken², Jorunn L. Helbostad², Kamiar Aminian¹

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), ²Norwegian University of Science and Technology

P1-M-102 Predicting physical activity in obese and normal weight older adults based on cognitive and physical function

Presenter: Noah Rosenblatt Noah Rosenblatt¹, Sai Yalla¹ ¹Rosalind Franklin University of Medicine and Science P1-M-103 Posture of lunge motion during a shuttle sprint test in soft tennis elite players

Presenter: Hidenori Shinohara

Hidenori Shinohara¹, Koji Kawakami², Kazutaka Takahashi³, Ayane Ogura⁴, Kenji Takahashi⁵, Hirofumi Ida⁴

¹Nippon Sports Science University, ²Sports Intelligence, ³University of Tsukuba, ⁴Jobu University, ⁵Aichi Gakusen University

N - Falls and fall prevention

P1-N-104 Comparing muscle power and muscle strength training using Thera-band for reducing fall risk in community-dwelling older adults

Presenter: **Kenneth Cheng Kenneth Cheng¹**, **Kim Chan¹** ¹Chinese University of Hong Kong

P1-N-105 Is there an optimal recovery step landing range to prevent backward fall from slips: Evidence from large-scale overground slips

Presenter: **Tanvi Bhatt Tanvi Bhatt¹, Shuaijie Wang¹, Yiru (Emma) Wang¹** ¹University of Illinois at Chicago

P1-N-106 Towards tailored fall prevention: Identifying modifiable risk factors in older people

Presenter: Femke Hulzinga Femke Hulzinga¹, Kimberley Van Schooten², Kim Delbaere²

¹KU Leuven, ²Neuroscience Research Australia

P1-N-107 Falls in a longitudinal Parkinson's disease cohort: What can we learn from baseline gait assessment in non-fallers over six years?

Presenter: Heather Hunter

Heather Hunter¹, Lisa Alcock², Sue Lord³, Rosie Morris⁴, Lynn Rochester⁵, Alison Yarnall²

¹Newcastle-upon-Tyne Hospitals NHS Foundation Trust, ²Newcastle University, ³Auckland University of Technology, ⁴Oregon Health & Science University, ⁵Institute of Neuroscience, Newcastle University P1-N-108 Motoric Cognitive Risk syndrome falls incidence and trajectory of gait and cognitive change in an octogenarian cohort: Te Puawaitanga o Nga Tapuwae Kia Ora Tonu, LiLACS NZ

Presenter: Sue Lord

Sue Lord¹, Simon Moyes², Ruth Teh², Waiora Port², Marama Muru-Lanning², Catherine Bacon², Tim Wilkinson³, Ngaire Kerse² ¹Auckland University of Technology, ²University of Auckland, ³Otago University

P1-N-109 Increasing plantar somatosensory performance on the one leg stance test in elderly

Presenter: Emmanuelle Pivron Braquet

Emmanuelle Pivron Braquet¹, Marc Janin² ¹PODOLOGUE, ²Université de Pau et des pays L'adour

P1-N-110 Aggressive proactive balance training using a multi-directional harness system and adapted video gaming: A case series

Presenter: Ann Reinthal

M Ann Reinthal¹, Debbie Espy¹, Lorenzo Bianco¹, John DeMarco¹, Emily Punchak¹ ¹Cleveland State University

P1-N-111 Effect of the rate of change of an external balance perturbation

Presenter: Thomas Robert

Thomas Robert¹, Marine Guinamard¹, Pascal Chabaud¹, Laurence Cheze¹, Marie-Laure Mille² ¹Université de Lyon, ²Aix Marseille Université

P1-N-112 Administration and scoring procedures for performance-based clinical balance tests do not accommodate practice effects among lower limb prosthesis users

Presenter: Andrew Sawers Andrew Sawers¹, Brian Hafner² ¹University of Illinois at Chicago, ²University of Washington

P1-N-113 Kinematic analysis of videos of real-life falls in older adults using Kinovea software Tjerk Zult¹, Matthew Timmis¹, Jonathan Allsop², Shahina Pardhan¹ ¹Anglia Ruskin University, ²Royal Air Force College Cranwell

Presenter: Nataliya Shishov Nataliya Shishov¹, Karam Elabd¹, Vicki Komisar¹, Stephen Robinovitch¹ ¹Simon Fraser University

ToC 90

P1-N-114 Dynamic stability measures respond uniquely to destabilization during asymmetric walking

Presenter: **Tarique Siragy Tarique Siragy¹, Julie Nantel¹** ¹University of Ottawa

P1-N-115 Total knee replacement patient's preoperative time to recovery expectations are related to fall risk

Presenter: **Brian Street Brian Street**¹ ¹*California State University, Bakersfield*

P1-N-116 Posturography differences between recurrent and non-recurrent fallers

Presenter: **Kyra Twohy Kyra Twohy¹**, **Vinayak Vijayan¹**, **Kimberly Bigelow¹** ¹University of Dayton

P1-N-117 An examination of muscle quality, functional test performance and fall risk in "young-old" women: A pilot study

Presenter: Jodi Ventre Jodi Ventre¹, Christopher Morse¹, David Tomlinson¹, Chesney Craig¹ ¹Manchester Metropolitan University

P1-N-118 Treadmill gait-slip training in healthy community-dwelling older adults: Mechanisms of within trial adaptation for a progressive ascending-and-mixed intensity protocol

Presenter: Yiru Wang Yiru Wang¹, Shuaijie Wang¹, Anna Lee¹, Clive Pai², Tanvi Bhatt¹

¹University of Illinois at Chicago, ²Retired from University of Illinois at Chicago

P1-N-119 The effects of time-pressure on adaptive gait in individuals with and without central vision loss

Presenter: Tjerk Zult

O - Habilitation & rehabilitation

P1-O-120 Instrumenting gait and balance assessment at home and in the community; exploratory data from the ACTIVATE feasibility study

Presenter: Christopher Buckley

Christopher Buckley¹, Silvia Del Din¹, Patrica McCue¹, Heather Hunter², Sue Lord³, Chris Price¹, Lisa Shaw¹, Helen Rogers¹, Lynn Rochester⁴, Sarah Moore¹ ¹Newcastle University, ²Newcastle-upon-Tyne Hospitals NHS

Foundation Trust, ³Auckland University of Technology, ⁴Institute of Neuroscience, Newcastle University

P1-O-121 Targeted transcranial electric stimulation mitigates the dual task cost to gait speed in older adults

Presenter: Brad Manor

Brad Manor¹, Junhong Zhou¹, On-Ye Lo¹, Alexa Ludington¹, Racheli Katz², Marina Brozgol², Pablo Cornejo Thumm², Jeff Hausdorff² ¹Harvard Medical School, ²Tel-Aviv Sourasky Medical Center

P1-O-122 Perturbation induced stepping in stroke: a way to use the more involved leg

Presenter: Katherine M Martinez

Katherine Martinez¹, Mary Blackinton², M. Samuel Cheng², Mark Rogers³, Marie-Laure Mille⁴

¹Northwestern University Feinberg School of Medicine, ²Nova Southeastern University, ³University of Maryland, ⁴Aix Marseille Université

P1-O-123 The effect of an exergame intervention on clinical balance scales in children with cerebral palsy: Preliminary results from two non-randomized trials

Presenter: Pieter Meyns

Pieter Meyns¹, Ian Blanckaert², Chloé Bras³, Jaap Harlaar⁴, Laura van de Pol³, Frederik Barkhof³, Hilde Van Waelvelde², Annemieke Buizer³

¹Hasselt University, ²Ghent University, ³Amsterdam UMC, Vrije Universiteit Amsterdam, ⁴Delft University of Technology

P1-O-124 How do spatiotemporal gait parameters change from the acute phase to 3 months later following a stroke?

Presenter: Ole Petter Norvang

Ole Petter Norvang¹, Torunn Askim¹, Anne Eitrem Dahl², Pernille Thingstad¹

¹Norwegian University of Science and Technology, ²Trondheim University Hospital

P1-O-125 Robotic intervention improves lateral gait symmetry in acute post-stroke patients

Presenter: Chun Kwang Tan

Chun Kwang Tan¹, Hideki Kadone¹, Hiroki Watanabe¹, Aiki Marushima², Yasushi Hada¹, Masashi Yamazaki¹, Yoshiyuki Sankai¹, Kenji Suzuki¹

¹University of Tsukuba, ²Faculty of Medicine, University of Tsukuba Hospital

P - Modeling

P1-P-126 Collision avoidance between walkers with a twist: Strategies for curvilinear and rectilinear paths

Presenter: Anne-Hélène Olivier

Sean Lynch¹, Richard Kulpa¹, Laurentius Meerhoff², Anthony Sorel¹, Julien Pettré², Anne-Hélène Olivier¹ ¹University of Rennes / Inria, ²Inria Rennes

P1-P-127 Identification of gait characteristics for early diagnosis of Parkinson's disease with machine learning

Presenter: Rana Zia Ur Rehman

Rana Zia Ur Rehman¹, Silvia Del Din¹, Yu Guan¹, Jian Qing Shi¹, Lynn Rochester²

¹Newcastle University, ²Institute of Neuroscience, Newcastle University

Q - Neurological diseases

P1-Q-128 Influence of mild impairment of Parkinson's disease on gait initiation

Presenter: Ana Barela

Ana Barela¹, Giovanna Machado¹, Douglas Russo-Junior¹, Flávia Doná², Henrique Ferraz², Jose Barela³ ¹Cruzeiro do Sul University, ²Federal University of São Carlos (UFSCar), ³São Paulo State University (UNESP)

P1-Q-129 The habituation of postural responses to perturbations is delayed in people with Parkinson's disease

Presenter: Victor Beretta

Victor Beretta¹, Mark Carpenter², Fabio Barbieri¹, Paulo Cezar Santos¹, Diego Orcioli-Silva¹, Marcelo Pereira¹, Lilian Gobbi¹

¹São Paulo State University (UNESP), ²University of British Columbia P1-Q-130 Perception of verticality correlates with postural and balance deficits in patients with Parkinson disease

Presenter: Gaia Bonassi

Gaia Bonassi¹, Laura Mori¹, Martina Putzolu¹, Chiara Ponte¹, Alessandro Botta¹, Giovanna Lagravinese¹, Laura Avanzino¹, Elisa Pelosin¹ ¹University of Genoa

P1-Q-131 Repetitive head impacts do not impair single task gait in collegiate ice hockey players

Presenter: Thomas Buckley

Thomas Buckley¹, Melissa DiFabio¹, Jessie Oldham², Katherine Breedlove³, Curtis Johnson¹

¹University of Delaware, ²Boston Children's Hospital, ³University of Michigan

P1-Q-132 Cholinergic upregulation in dorsomedial thalamus prior to conversion to freezing of gait in Parkinson's disease

Presenter: Nicholas D'Cruz

Nicholas D'Cruz¹, Martijn Muller², Prabesh Kanel², Alice Nieuwboer¹, Nico Bohnen²

¹KU Leuven, ²University of Michigan

P1-Q-133 Turning velocity and coordination in multiple sclerosis

Presenter: Lee Dibble Brian Loyd¹, Grace Hunt¹, Annie Fangman¹, Peter Fino¹, Lee Dibble¹

¹University of Utah

P1-Q-134 The neural correlates of motor imagery of mediolateral dynamic balance in Parkinson's disease

Presenter: Bauke Dijkstra

Bauke Dijkstra¹, Moran Gilat¹, Sabine Verschueren¹, Alice Nieuwboer¹ ¹KU Leuven

P1-Q-135 Effect of dopamine on mediolateral dynamic balance in Parkinson's disease and freezing of gait

Presenter: Moran Gilat

Moran Gilat¹, Bauke Dijkstra¹, Alice Nieuwboer¹ ¹KU Leuven

P1-Q-136	Effects of perturbation-based balance
training or	balance, gait and balance confidence in
subacute p	ersons with stroke: A randomized controlled
trial	

Presenter: Shirley Handelzalts Shirley Handelzalts¹, Michal Kanner-Furman¹, Ganit Gray¹, Nachum Soroker², Itshak Melzer¹ ¹Ben-Gurion University, ²Loewenstein Rehabilitation Hospital

P1-Q-137 The effect of combined transcutaneous direct current stimulation and locomotor training on spinal excitability in an individual with chronic spinal cord injury

Presenter: Kelly Hawkins

 Kelly Hawkins¹, Lou DeMark², Arian Vistamehr², Geneva Tonuzi², David Fuller¹, David Clark³, Emily Fox¹

¹University of Florida, ²Brooks Rehabilitation, ³Malcom Randall VA Medical Center; University of Florida

P1-Q-138 The differences in sagittal plane whole-body angular momentum during gait between patients with hemiparesis and healthy people

Presenter: **Keita Honda Keita Honda¹, Yusuke Sekiguchi¹, Takayuki Muraki¹, Shin-Ichi Izumi¹** *e* **¹Tohoku University**

P1-Q-139 Unravelling quantitative measures of freeliving ataxic gait in cerebellar patients using wearable sensors

Presenter: Winfried Ilg

Winfried Ilg¹, Jens Seemann¹, Matthis Synofzik¹ ¹Hertie Institute for Clinical Brain Research

P1-Q-140 Can transcranial direct current stimulation improve gait initiation in individuals with Parkinson's disease?

Presenter: **Jonathan Lommen** Jonathan Lommen¹, Anthony Carlsen¹, Julie Nantel¹ ¹University of Ottawa

P1-Q-141 Electromyographic profiles of gait initiation in people with Parkinson's disease: The effects of external sensory cueing

Presenter: Colum MacKinnon

Colum MacKinnon¹, Lesley Perg¹, Chiahao Lu¹, Matthew Petrucci¹, Abigail Kohut-Jackson¹, Paul Tuite¹, Sommer Amundsen Huffmaster¹ ¹University of Minnesota

P1-Q-142 The effects of obstacle size and timing on prefrontal cortex activation in patients with Parkinson's disease

Presenter: Inbal Maidan

Inbal Maidan¹, Topaz Sharon¹, Ilan Kurz², Hagar Bernad-Elazari¹, Shiran Shustak¹, Ira Galperin¹, Anat Mirelman¹, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²Ben-Gurion University

P1-Q-143 Post-stroke walking characteristics on association between motor paralysis and walking speed by cluster analysis

Presenter: Naomichi Mizuta

Naomichi Mizuta¹, Yusaku Takamura¹, Shintaro Fujii¹, Naruhito Hasui¹, Tomoki Nakatani², Masako Tsutsumi², Junji Taguchi², Shu Morioka³

¹Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, ²Takarazuka Rehabilitation Hospital, ³Kio University

P1-Q-144 Reweighting of sensory information during gait in Parkinson's disease

Presenter: Marcelo Pereira

Marcelo Pereira¹, Quincy Ameida², Lilian T. Gobbi³ ¹São Paulo State University (UNESP), ²Wilfrid Laurier University, ³UNESP - Rio Claro

P1-Q-145 Brain functional connectivity changes associated to freezing of gait in Parkinson's disease

Presenter: Alexandra Potvin-Desrochers

Alexandra Potvin-Desrochers¹, Trina Mitchell¹, Thomas Gisiger¹, Caroline Paquette¹ ¹McGill University P1-Q-146 Occupational therapy intervention to improve the quality of life of client with Friedreich's Ataxia- A case study of complete rehabilitation from complete dependency to living independently

Presenter: Deepa Pradhan

Deepa Pradhan¹ ¹Mumbai University

P1-Q-147 Can saccadic eye movements minimize the deleterious effect of ankle muscle fatigue on postural control in people with Multiple Sclerosis?

Presenter: Felipe Balistieri Santinelli

Felipe Santinelli¹, Emerson Sebastião², Fabiana Silva¹, Gabriel Moretto¹, Luiz Felipe Imaizumi¹, Lucas Simieli¹, Richard Van Emmerik³, Fabio Barbieri¹

¹São Paulo State University (UNESP), ²Northern Illinois University, ³University of Massachussets

P1-Q-148 Adaptive capacity to split-belt treadmill walking of people with Parkinson's disease with freezing of gait

Presenter: Jana Seuthe

Jana Seuthe¹, Nicholas D'Cruz², Pieter Ginis², Burkhard Weisser¹, Alice Nieuwboer², Christian Schlenstedt¹ ¹Christian-Allbrechts-University of Kiel, ²KU Leuven

P1-Q-149 Dual task gait cost in Parkinson's disease patients with and without depressive symptoms

Presenter: Carolina Silveira

Carolina Silveira¹, Frederico Pieruccini-Faria², Eric Roy³, Quincy Almeida⁴

¹Lawson Health Research Institute, ²University of Western Ontario, ³University of Waterloo, ⁴Wilfrid Laurier University

P1-Q-150 Automatic detection of Bradykinesia in Parkinson's disease

Presenter: Elke Warmerdam

Elke Warmerdam¹, Gerhard Schmidt², Clint Hansen¹, Walter Maetzler¹, Rana Zia Ur Rehman³

¹Christian-Allbrechts-University of Kiel, ²Kiel University, ³Newcastle University P1-Q-151 Non-invasive vagus nerve stimulation: A non-pharmacological approach to target gait impairment in Parkinson's disease?

Presenter: Alison Yarnall

Alison Yarnall¹, Rosie Morris², John-Paul Taylor¹, Mark Baker¹, Lynn Rochester³

¹Newcastle University, ²Oregon Health & Science University, ³Institute of Neuroscience, Newcastle University

P1-Q-152 Using analogies to overcome freezing of gait: A first step towards making the first step

Presenter: Will Young

William Young¹, Amy Maslivec¹, Anna Fielding¹, Mark Wilson², Meriel Norris¹, John Cossar¹ ¹Brunel University, ²University of Exeter

R - Orthopedic diseases and injuries

P1-R-153 Functional electrical stimulation during gait following anterior cruciate ligament reconstruction - A preliminary study

Presenter: Shmuel Springer

Shmuel Springer¹, Uria Moran², Uri Gottlieb², Arnon Gam²

¹Ariel University, ²IDF Medical Corps

S - Proprioceptive function and disorders

P1-S-154 How varying levels of skin stretch affect perceived skin stretch sensitivity

Presenter: William MacDonald William MacDonald¹, Simone Smith¹, Shawn Beaudette², Stephen Brown¹, Leah Bent¹ ¹University of Guelph, ²University of Ottawa

U - Robotics

P1-U-155 Reshaping of gait coordination with robotic intervention in myelopathy patients with residual motor disturbances after surgery

Presenter: Sandra Puentes

Sandra Puentes¹, Hideki Kadone¹, Shigeki Kubota¹, Tetsuya Abe², Yukiyo Shimizu¹, Yasushi Hada¹, Aiki Marushima², Masashi Yamazaki¹, Yoshiyuki Sankai¹, Kenji Suzuki¹

¹University of Tsukuba, ²Faculty of Medicine, University of Tsukuba Hospital

🚽 ToC

94

V - Sensorimotor control

P1-V-156 Testing the potential of immersive technologies for measuring motor skills

Presenter: Mshari Alghadier

Mshari Alghadier¹, Jack Brooks¹, Faisal Mushtaq¹, Mark Mon-Williams¹

¹Institute of Psychological Sciences

P1-V-157 The effects of changes to body dimensions on an aperture crossing task

Presenter: **Braden Boley Braden Boley¹**, **Michael Cinelli¹** ¹Wilfrid Laurier University

P1-V-158 Examining body size-characteristics on obstacle avoidance behaviour in human locomotion

Presenter: Sheryl Bourgaize

Sheryl Bourgaize¹, Bradford McFadyen², Michael Cinelli¹ ¹Wilfrid Laurier University, ²Université Laval

P1-V-159 Balance control during the reintegration of proprioceptive and vestibular information

Presenter: Jean-Philippe Cyr

Jean-Philippe Cyr¹, Martin Simoneau¹, Noémie Anctil¹ ¹Université Laval

P1-V-160 Frequency characteristics of heteronymous Achilles tendon reflexes during quiet stance

Presenter: Gregg Eschelmuller Gregg Eschelmuller¹, Robyn Mildren¹, Jean-Sebastien Blouin¹, Mark Carpenter¹, J. Timothy Inglis¹ ¹University of British Columbia

P1-V-161 Comparing the effects of four different haptic modalities on the standing balance of individuals with an incomplete spinal cord injury

Presenter: Pawan Kumar

Pawan Kumar¹, Tarun Arora², Joel Lanovaz¹, Renato Moraes³, Kristin Musselman⁴, Alison Oates¹

¹University of Saskatchewan, ²Cleveland Clinic Foundation, ³University of São Paulo, ⁴University of Toronto

P1-V-162 Balance control in young adult athletes with a history of recent concussion (> 3 months) during a lower limb reaching task

Presenter: Katelyn Mitchell Katelyn Mitchell¹, Michael Cinelli¹ ¹Wilfrid Laurier University

P1-V-163 Light touch with two hands rather than one more effectively reduces postural sway, but number of contact points does not similarly influence the effectiveness of the haptic anchors in older adults

Presenter: **Renato Moraes**

Renato Moraes¹, Bruno Bedo¹, Vitor Arpini¹, Rosangela Batistela¹, Paulo Santiago¹, Eliane Mauerberg-deCastro²

¹University of São Paulo, ²São Paulo State University (UNESP)

P1-V-164 Adaptability of human gait: Effect of training with red noise auditory stimuli on gait fluctuation patterns

Presenter: Cecilia Power

Cecilia Power¹, Jeevaka Kiriella¹, Janessa Drake¹, William Gage¹ ¹York University

P1-V-165 Assessment of balance after repeated sub-concussive head trauma in female athletes

Presenter: Christopher Rhea

Christopher Rhea¹, Sam DuBois¹, Victoria Blevins¹, Kristen Schleich², Scott Ross¹, Donna Duffy¹ ¹University of North Carolina, Greensboro, ²Elon University

P1-V-166 Effect of the horizontal-vertical illusion on stepping-over action

Presenter: Ryota Sakurai

Ryota Sakurai¹, Kentaro Kodama², Yu Ozawa³ ¹Tokyo Metropolitan Institute of Gerontology, ²Kanagawa University, ³Waseda University

P1-V-167 Sensory weighting and organization strategies used by young adults with CLBP during standing

Presenter: Jennifer Sansom Jennifer Sansom¹, Karen Lomond² ¹Central Michigan University, ²Ithaca College P1-V-168 Associations between motor cortex inhibition and stable turning characteristics in healthy controls and people with Multiple Sclerosis

Presenter: Clayton Swanson

Clayton Swanson¹, Andrew Monaghan¹, Sutton Richmond¹, Tyler Whittier¹, Brett Fling¹ ¹Colorado State University

W - Tools and methods for posture and gait analysis

P1-W-169 Correlation between mandibular position and modification of stabilometric parameters (LFS, VarVit)

Presenter: Michele Barbera

Michele Barbera¹, Nicolò Barbera¹, Emanuele Barbera², Andrea Fregoni¹

¹Studio Dentistico Barbera, ²Università degli Studi di Milano

P1-W-170 Loading response peak anchoring: A novel solution for the double-belt problem

Presenter: Oran Ben-Gal

Oran Ben-Gal¹, Glen Doniger¹, Maya Cohen¹, Michal Schnaider-Beeri¹, Meir Plotnik¹ ¹Sheba Medical Center

P1-W-171 Evaluation of balance recovery from unpredictable large-magnitude perturbations through the compensatory arm and leg movements (CALM) scale

Presenter: Marina Betelli

Luis Teixeira¹, Marina Betelli¹, Patricia Takazono¹, Caroline Souza¹, Julia Oliveira¹, Daniel Coelho¹, Jacques Duysens²

¹University of São Paulo, ²Catholic University of Leuven

P1-W-172 An evaluation of a proprietary motion capture system via kinematic analysis

Presenter: Vincenzo Di Bacco

Vincenzo Di Bacco¹, Dmitry Verniba¹, William Gage¹ ¹York University

P1-W-173 Estimating lateral margin of stability during walking and turning using inertial sensors

Presenter: Peter Fino Peter Fino¹, Carolin Curtze²

¹University of Utah, ²University of Nebraska Omaha

P1-W-174 Automated and quantification of the tandem walking using a wearable device

Presenter: Natalie Ganz

Natalie Ganz¹, Eran Gazit¹, Amit Hadad², Aron Buchman³, Anat Mirelman¹, Jeff Hausdorff¹ ¹Tel-Aviv Sourasky Medical Center, ²Tel Aviv University, ³Rush Alzheimer's Disease Center

P1-W-175 Creating and validating a shortened version of the community balance & mobility scale for application in young seniors

Presenter: Katharina Gordt

Katharina Gordt¹, A.Stefanie Mikolaizak², Kristin Taraldsen³, Ronny Bergquist³, Jeanine Van Ancum⁴, Corinna Nerz², Mirjam Pijnappels⁴, Andrea Maier⁴, Jorunn Helbostad³, Beatrix Vereijken³, Clemens Becker², Michael Schwenk⁵

¹Network Aging Research, ²Robert-Bosch-Krankenhaus, ³Norwegian University of Science and Technology, ⁴Vrije Universiteit Amsterdam, ⁵Heidelberg University

P1-W-176 Towards better quantification of freezing of gait in Parkinson's disease: The added value of performance timing

Presenter: Talia Herman

Talia Herman-Feinstein¹, Moria Dagan², Shirley Shema-Shiratzky¹, Marina Brozgol¹, Tal Reches¹, Nir Giladi¹, Brad Manor³, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²Tel Aviv University, ³Harvard Medical School

P1-W-177 Test-retest reliability of force plate balance measures in individuals with chronic stroke

Presenter: Andrew Huntley

Andrew Huntley¹, Elise Belhacel², Raabeae Aryan³, Alison Schinkel-Ivy⁴, Anthony Aqui¹, Avril Mansfield¹

¹Toronto Rehabilitation Institute, ²Institut ESIPE Créteil (ISBS) - Université Paris-Est Créteil, ³University of Toronto, ⁴Nipissing University

P1-W-178 Peak plantar ankle flex push-off power estimation using single inertial measurement units

Presenter: Xianta Jiang

Xianta Jiang¹, Mohsen Gholami¹, Janice Eng², Carlo Menon¹

¹Simon Fraser University, ²University of British Columbia and GF Strong Rehab Centre

96

P1-W-179 Reliability of different clinical techniques for assessing foot posture

Presenter: Muge Kirmizi Muge Kirmizi¹, Mehmet Cakiroglu¹, Ibrahim Simsek¹, Ata Elvan¹, Salih Angin¹ ¹Dokuz Eylul University

P1-W-180 Factors associated with daily variation in gait performance in older adults

Presenter: Alexa Ludington

Alexa Ludington¹, Junhong Zhou¹, Wanting Yu¹, Brad Manor¹, On-Yee Lo¹ ¹Harvard Medical School

P1-W-181 Development of instrumented shoe with miniature high-capacity load vector sensor and application to gait assessment

Presenter: Masato Shindo Masato Shindo¹, Takeshi Yamaguchi¹, Yoshihiro Sasaki², Kazuo Hokkirigawa¹

¹Tohoku University, ²Research Institute for Electromagnetic Materials

P1-W-182 Validity and usability of a mixed reality headset for automated mobility assessment

Presenter: Ruopeng Sun Ruopeng Sun¹, Roberto Aldunate¹, Jacob Sosnoff¹ ¹University of Illinois at Urbana-Champaign

P1-W-183 Can we elicit increasing lumbar flexion movement using a standardized reaching paradigm in an immersive virtual reality environment?

Presenter: Susanne van der Veen Susanne van der Veen¹, Dana Nocera², Kellen Kubik², Emma Fish², James Thomas¹ ¹Virginia Commonwealth University, ²Ohio University

P1-W-184 Quantification of seated balance control using system identification

Presenter: Albert Vette Albert Vette¹, Kshitij Agarwal¹, Alireza Noamani¹, Andrew Williams¹, Hossein Rouhani¹ ¹University of Alberta

X - Vestibular function and disorders

P1-X-185 Postural instability in subjects with Usher syndrome

Presenter: Simona Caldani

Simona Caldani¹, Maria Pia Bucci¹, Maud Tisne¹, Isabelle Audo², Thierry Van Den Abbeele¹, Sylvette Wiener Vacher¹

¹Hopital Robert Debré, ²CHNO

P1-X-186 Balance performance in bilateral vestibulopathy in relation to sensorimotor integration

Presenter: Nolan Herssens

Nolan Herssens¹, Evi Verbecque², Wim Saeys¹, Luc Vereeck¹, Vincent Van Rompaey¹, Christopher McCrum³, Kenneth Meijer³, Ann Hallemans¹

¹University of Antwerp, ²University of Hasselt, ³Maastricht University

P1-X-187 Determination of an objective threshold for galvanic vestibular stimulation

Presenter: Youstina Mikhail

Youstina Mikhail¹, Jean-Marc Mac-Thiong², Dorothy Barthélemy³

¹Centre for Interdisciplinary Research in Rehabilitation (CRIR-IRGLM), ²CIUSSS Centre-Sud-de-l'île-de-Montréal, ³Université de Montréal

P1-X-188 Evaluation of after-effects of noisy vestibular stimulation on vestibular motion perception

Presenter: Max Wühr

Max Wühr¹, Aram Keywan¹, Klaus Jahn¹ ¹Ludwig-Maximillians Universität München

P1-X-189 Body equilibrium function in the course of Ménière's disease

Presenter: Masahiko Yamamoto Masahiko Yamamoto¹ ¹Toho University

Y - Visual function and disorders

P1-Y-190 A perceptual perspective: Exploring visual search patterns during freezing of gait in Parkinson's disease

Presenter: Lotte Hardeman Lotte Hardeman¹, Elmar Kal², Toby Ellmers², Will **Young², Anna Fielding²** ¹Vrije Universiteit Amsterdam, ²Brunel University

P1-Y-191 Examining the relationship between visual acuity, executive function and postural control in cognitively healthy adults and adults with Alzheimer's dementia

Presenter: Susan Hunter

Susan Hunter¹, Alison Divine², Humberto Omana¹, Andrew Johnson¹, Jeff Holmes¹, Keith Hill³, Walter Wittich⁴

¹University of Western Ontario, ²University of Leeds, ³Curtin University, ⁴University of Montreal

POSTER SESSION 2: TUESDAY 2ND JULY

A - Activity monitoring

P2-A-1 The effect of sensor location on the assessment of sit-to-stand transitions

Presenter: **Arash Atrsaei Arash Atrsaei¹, Benoît Mariani², Kamiar Aminian¹** ¹Ecole Polytechnique Fédérale de Lausanne (EPFL), ²Gait Up S.A.

P2-A-2 Real-world steps, cadence and walking bouts estimated by wrist sensor: Effects of aging, obesity and gender in a population-based cohort study

Presenter: Abolfazl Soltani

Abolfazl Soltani¹, Anisoara Ionescu¹, Pedro Manuel Marques-Vidal², Kamiar Aminian¹

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), ²Department of Internal Medicine of CHUV

B - Adaptation, learning, plasticity and compensation

P2-B-3 Adaptation induced change in overground slip recovery outcomes: Distinct strategies or continuum of an emerging single strategy control?

Presenter: Tanvi Bhatt

Tanvi Bhatt¹, Shuaijie Wang¹, Yi-Chung Pai², Yiru Wang¹ ¹University of Illinois at Chicago, ²Retired from University of Illinois at Chicago

P2-B-4 Investigating proactive balance control in individuals with incomplete spinal cord injury

Presenter: Mackenzie Bone

Mackenzie Bone¹, Kristin Musselman², Joel Lanovaz¹, Tarun Arora³, Gary Linassi⁴, Alison Oates¹ ¹University of Saskatchewan, ²University of Toronto, ³Cleveland

Clinic Foundation, ⁴Saskatchewan Health Authority

P2-B-5 Locomotor savings of split-belt gait adaptation indicate long-term adaptation processes

Presenter: Tom Buurke

Tom Buurke¹, Claudine Lamoth¹, Lucas van der Woude¹,
Rob den Otter¹Presenter: Susanne van der Veen¹University Medical Center GroningenSusanne van der Veen¹, Ulrike Hammerbeck², Kristen
Hollands³

P2-B-6 Singular Spectrum Analysis for the detection of adaptation rates in split-belt data

Presenter: Rob den Otter

Rob den Otter¹, Tom Buurke¹, Claudine Lamoth¹ ¹University Medical Center Groningen

P2-B-7 Implicit and explicit motor learning in gait rehabilitation of people after stroke: A randomized controlled single blind trial

Presenter: Li-Juan Jie

Li-Juan Jie¹, Melanie Kleynen², Kenneth Meijer¹, Anne Beurskens², Susy Braun² ¹Maastricht University, ²Zuyd University of Applied Sciences

P2-B-8 Hands up in the air and wave them like you care: Effect of exposure on upper limb kinematics during

continuous, multi-directional perturbations Presenter: Vicki Komisar

Carolyn Duncan¹, Alison Schinkel-Ivy², Andrew Laing³, Vicki Komisar⁴

¹Michigan Technological Institute, ²Nipissing University, ³University of Waterloo, ⁴Simon Fraser University

P2-B-9 Neuromuscular adaptations in balance control following a lower-limb transfemoral amputation

Presenter: Cristian Pasluosta

Cristian Pasluosta¹, Claudia Ramos Claret², Georg Herget², Lukas Kouba², Daniel Wiest³, Jochen Adler³, Vinzenz von Tscharner⁴, Thomas Stieglitz²

¹Friedrich-Alexander University (FAU) Erlangen-Nürnberg, ²University of Freiburg, ³Sanitätshaus Pfänder, ⁴University of Calgary

ToC 98

P2-B-10 Developing resilience to unpredictable body balance perturbations: Contextual interference effect in the training of compensatory arm and leg movements

Presenter: Luis Teixeira

Luis Teixeira¹, Patricia Takazono¹, Marina Betelli¹, Caroline Souza¹, Julia Oliveira¹, Daniel Coelho¹, Jacques Duysens²

¹University of São Paulo, ²Catholic University of Leuven

P2-B-11 How does balance affect gait in stroke survivors?

¹Virginia Commonwealth University, ²Manchester University, ³University of Salford

C - Aging

P2-C-12 Cognitive-motor interference in older adults while navigating in an ecological environment

Presenter: Catherine Agathos Catherine Agathos¹, Marcia Bécu¹, Konogan Baranton², Delphine Bernardin³, Angelo Arleo¹

¹Sorbonne Université, INSERM, CNRS, Institut de la Vision, ²Essilor International, ³Essilor Canada

P2-C-13 Parkinsonian gait in aging: A signature of Alzheimer's pathology

Presenter: **Gilles Allali Gilles Allali¹, Eric Morel², Stephane Armand¹, Frederic Assal¹** ¹Geneva University Hospitals, ²University of Geneva

P2-C-14 Effect of High Intensity Interval Training combined with citrulline supplementation on gait parameters and its predictors in healthy older women: A pilot study

Presenter: **Mylene Aubertin Mylène Aubertin-Leheudre**¹ ¹Université du Québec à Montréal

P2-C-15 Rate of muscle force development during fatigue: Impact of age

Presenter: Marc Belanger

Marc Belanger¹, Charlotte Pion¹, Justine Lai¹, Said Mamouh¹, Mylène Aubertin-Leheudre¹ ¹Université du Québec à Montréal

P2-C-16 Can years of education predict gait speed? A cross-sectional study of community-dwelling Brazilian older adults

Presenter: Renato Freire Júnior

Renato Freire Júnior¹, Jaqueline Porto¹, Julia Fernandes¹, Larissa Bocarde¹, Tatiane Pontes¹, Karoliny Cruz², Juliane Belém³, Daniela Abreu¹

¹University of São Paulo, ²Federal University of Amazonas -UFAM, ³Family Health Support Center - Coari - AM

P2-C-17 Is trunk strength associated with functional mobility in older women?

Presenter: Emily Gregg Emily Gregg¹, Gareth Nicholson¹, Clive Beggs¹, Athanassios Bissas¹ ¹Leeds Beckett University

P2-C-18 Which lower limb muscle strength could be associated with low gait speed in frail older people?

Presenter: Daniela Cristina Abreu

Natalia losimuta¹, Natalia Alves², Emanuella Angeluni², Fernanda Pessanha², Larissa Marques², Renato Freire Junior³, Eduardo Ferriolli², Daniela Abreu⁴

¹Federal University of Amapa, ²Ribeirão Preto Medical School, University of São Paulo, ³Federal University of Manaus, ⁴University of São Paulo

P2-C-19 Spatiotemporal gait parameters for older adults - An interactive model adjusting reference data for gender, age, and body height

Presenter: Rolf Moe-Nilssen

Rolf Moe-Nilssen¹, Jorunn Helbostad²

¹University of Bergen, ²Norwegian University of Science and Technology

P2-C-20 The effects of fatigue and age on gait dynamics

Presenter: Paulo Cezar Rocha Santos

Paulo Cezar Santos¹, Tibor Hortobágyi², Inge Zijdewind², Lilian Gobbi¹, Fabio Barbieri¹, Claudine Lamoth³

¹São Paulo State University (UNESP), ²University of Groningen, University Medical Center Groningen, ³University Medical Center Groningen

P2-C-21 Age-related differences in the energy cost of walking while thinking

Presenter: Britney Williams

Britney Williams¹, Taylor Woods¹, James Lang², Jessie Vanswearingen³, Kristin Lowry¹

¹Des Moines University, ²Iowa State University, ³University of Pittsburgh

P2-C-22 Effects of age-related changes in step length and step width on the friction requirement at shoe-floor interface during straight level walking

Presenter: **Takeshi Yamaguchi Takeshi Yamaguchi**¹, Kei Masani²

¹Tohoku University, ²University of Toronto

D - Biomechanics

P2-D-23 Neural mechanisms of balance and gait adaptations after downslope walking

Presenter: Nikki Aitcheson-Huehn

Nikki Aitcheson-Huehn¹, Jayne Kalmar¹, Michael Cinelli¹ ¹Wilfrid Laurier University

P2-D-24 Elucidation of the trunk motion affecting the knee joint stress during gait

Presenter: Masahiro Edo

Masahiro Edo¹, Fumiko Kamijo², Toshihiko Sato³ ¹Chiba Prefectural University of Health Sciences, ²Showa University, ³Bunkyo Gakuin University

P2-D-25 Effect of trunk brace on forward bending movement characteristics in patients with scoliosis

Presenter: Wei-Chun Hsu

Wei-Chun Hsu¹, Muhammad Izhar Ahmed¹, Chao-Chin Chang¹, Chi Kuang Feng², Shi-Jinn Horng¹, Chung-Hsien Kuo¹, Shang-Chih Lin¹

¹National Taiwan University of Science and Technology, ²Taipei Veterans General Hospital, National Yang Ming University, National Defense of Medial Center

P2-D-26 Relationship between foot posture assessment techniques and dynamic plantar pressure variables

Presenter: Muge Kirmizi

Muge Kirmizi¹, Mehmet Cakiroglu¹, Ibrahim Simsek¹, Salih Angin¹ ¹Dokuz Eylul University

P2-D-27 Lateral stability during anterior and posterior support surface perturbations in people with chronic stroke

Presenter: Christopher McCrum

Christopher McCrum¹, Andrew Huntley², Alison Schinkel-Ivy³, Avril Mansfield²

¹Maastricht University, ²Toronto Rehabilitation Institute-University Health Network, ³Nipissing University

P2-D-28 Using induced acceleration to study the effects of age and grade on the joint moment strategy to control knee flexion during weight acceptance in walking

Presenter: Jeroen Waanders

Jeroen Waanders¹, Tibor Hortobágyi¹, Alessio Murgia¹, Paul DeVita², Jason Franz³

¹University of Groningen, University Medical Center Groningen, ²East Carolina University, ³University of North Carolina at Chapel Hill and North Carolina State University

E - Brain imaging/activation during posture and gait

P2-E-29 Are there associations between prefrontal cortex activity and turning behaviors in people with and without freezing of gait?

Presenter: Valeria Belluscio

Valeria Belluscio¹, Samuel Stuart², Elena Bergamini¹, Giuseppe Vannozzi¹, Martina Mancini²

¹Interuniversity Centre of Bioengineering Bohnes, University of Rome Foro Italico, ²Oregon Health & Science University

ToC 100

	in idiopathic REM sleep behaviour disorder patients separated using clinical phenotyping
i	Presenter: Kaylena Ehgoetz Martens Kaylena Ehgoetz Martens ¹ , Elie Matar ¹ , James Shine ¹ , Joseph Phillips ² , Ronald Grunstein ¹ , Glenda Halliday ¹ , Simon Lewis ¹ ¹ University of Sydney, ² University of Western Sydney
t	P2-E-31 Prefrontal cortex activity requirements when young and older people perform cognitively-demanding stepping tasks in supported and unsupported conditions: A fNIRS study
	Presenter: Jasmine Menant
	Jasmine Menant ¹ , Paulo Pelicioni ¹ , Daina Sturnieks ¹ ,
	Stepehen Lord¹ ¹ Neuroscience Research Australia, University of New South Wales
	P2-E-32 Exploration of brain cholinergic correlates of gait in Parkinson disease: An in vivo voxel-based [18F] FEOBV PET analysis
	Presenter: Martijn Muller
	Martijn Muller¹, Prabesh Kanel¹, Nicolaas Bohnen¹ ¹ University of Michigan
;	P2-E-33 Brain activation associated with active and passive overground gait in a robotic exoskeleton
	Presenter: Sue Peters
	Sue Peters ¹ , Denis Louie ¹ , Shannon Lim ¹ , Chieh-ling Yang ¹ , Janice Eng ¹ ¹ University of British Columbia
,	P2-E-34 Auditory-evoked cortical activity preceding postural instability
	Presenter: Paula Polastri
	Paula Polastri ¹ , Mark Laylor ² , Jessy Varghese ² , William McIlroy ²
	¹ São Paulo State University (UNESP), ² University of Waterloo
	P2-E-35 Brain functional substrate of gait observation in Parkinson's disease
	Presenter: Martina Putzolu
	Martina Putzolu ¹ , Giulia Bommarito ¹ , Cecilia Cerulli ¹ , Giovanna Lagravinese ¹ , Carla Ogliastro ¹ , Gaia Bonassi ¹ , Laura Avanzino ¹ , Matilde Inglese ¹ , Elisa Pelosin ¹

DD F DD Velidetien of discussion for an elder for all

P2-E-36 Higher resting state connectivity of the dopaminergic motor network may reduce age-related step length variability

Presenter: Caterina Rosano

Caterina Rosano¹, Helmet Karim¹, Andrea Rosso¹, Nicolas Bohnen², Howard Aizenstein¹, Stephen Smagula¹, Stephanie Studenski¹ ¹University of Pittsburgh, ²University of Michigan

P2-E-37 Removal of artifacts to compute intra stride cortical dynamics with EEG in Parkinson's disease

Presenter: Marlieke Scholten Marlieke Scholten¹, Markus Siegel², Daniel Weiss¹ ¹Hertie Institute for Clinical Brain Research, ²Centre for Integrative Neuroscience (CIN) & MEG Center

P2-E-38 Cortical response to open and closed-loop tactile cueing during walking and turning in Parkinson's

Presenter: Samuel Stuart Samuel Stuart¹, Martina Mancini¹ ¹Oregon Health & Science University

P2-E-39 Influence of anxiety on prefrontal cortical activity during usual walking and obstacle crossing in older adults

Presenter: Rodrigo Vitório

Nubia Conceição¹, Priscila Sousa¹, Diego Orcioli-Silva¹, Victor Beretta¹, Ellen Lirani-Silva¹, Lilian Gobbi¹, Rodrigo Vitório¹ ¹São Paulo State University (UNESP)

F - Cognitive impairments

P2-F-40 Gait patterns and cognitive decline: A longitudinal population-based study

Presenter: Oshadi Jayakody Oshadi Jayakody¹, Monique Breslin¹, Velandai Srikanth², Michele Callisaya¹ ¹University of Tasmania, ²Peninsula Health, Monash University

P2-F-41 Is free-living gait assessment a useful marker of cognitive impairment and dementia disease subtype?

Presenter: Riona Mc Ardle

Riona Mc Ardle¹, Brook Galna¹, Silvia Del Din¹, Alan Thomas¹, Lynn Rochester²

¹Newcastle University, ²Institute of Neuroscience, Newcastle University

P2-F-42 Developing exercise groups for persons with dementia

Presenter: Kristin Taraldsen

Kristin Taraldsen¹, Elisabeth Boulton², Jorunn Helbostad¹, Ingvild Saltvedt¹, Gro Tangen³, Randi Granbo¹

¹Norwegian University of Science and Technology, ²University of Manchester, ³Norwegian National Advisory Unit on Ageing and Health

P2-F-43 The effects of cognitive impairment on the multi-scale dynamics of standing postural control in older adults

Presenter: Junhong Zhou

Junhong Zhou¹, Brad Manor¹, J. Riley McCarten², Michael Wade³, Azizah Jor'dan¹

¹Harvard Medical School, ²Minneapolis Veterans Affairs Medical Center, ³University of Minnesota - Twin Cities

G - Cognitive, attentional, and emotional influences

P2-G-44 The validity and predictive validity of the Gait-Specific Attentional Profile (G-SAP)

Presenter: Adam Cocks

Adam Cocks¹, William Young¹, Toby Ellmers¹, Joseph McCarthy¹, Noel Kinrade¹ ¹Brunel University

P2-G-45 Emotional, cognitive, and postural adaptations to repeated postural threat exposure

Presenter: Kyle Johnson

Kyle Johnson¹, Martin Zaback², Craig Tokuno¹, Mark Carpenter², Allan Adkin¹ ¹Brock University, ²University of British Columbia

P2-G-46 Reading the mind: Pupillometry as a means to measure conscious movement processing?

Presenter: Elmar Kal Elmar Kal¹, Nieck Detillon², Bram Kragting², John van der Kamp² ¹Brunel University, ²Vrije Universiteit Amsterdam

P2-G-47 Factors associated with texting while walking performance across different environments

Presenter: Tal Krasovsky

Tal Krasovsky¹, Patrice Weiss¹, Rachel Kizony¹ ¹University of Haifa

P2-G-48 Dual-task gait training is not superior to singletask gait training within 3 years of stroke: A randomized controlled trial

Presenter: Prudence Plummer

Prudence Plummer¹, Jody Feld¹, Lisa Zukowski², Bijan Najafi³

¹University of North Carolina at Chapel Hill, ²High Point University, ³Baylor University

P2-G-49 Increasing the distance of an external focus of attention enhances learning: A replication and extension of McNevin, Shea and Wulf (2003)

Presenter: Nadia Polskaia Nadia Polskaia¹, Rebecca Bond¹, Juliane Ratte¹, Yves Lajoie¹ ¹University of Ottawa

P2-G-50 Relating reaction times to local sway features to unveil intermittency in postural control

Presenter: John Stins John Stins¹, Melvyn Roerdink¹ ¹Vrije Universiteit Amsterdam

P2-G-51 Smartphone-based balance assessment for older adults enrolled a 12-week attentionally focused balance training intervention: Preliminary data

Presenter: Ruth Stout

Ruth Stout¹, Lauren Higgins¹, Danielle Felsburg¹, Masahiro Yamada¹, Sean Cochrane¹, Chanel LoJacono¹, Amanda Barclift¹, John Palazzolo¹, Jeff Labban¹, Louisa Raisbeck¹, Jeffery Fairbrother², Christopher Rhea¹ ¹University of North Carolina, Greensboro, ²University of Tennessee

P2-G-52 Postural adjustments during manual motor imagery in young and older people

Presenter: Chloe Wider Chloe Wider¹, Mark Andrews¹, Hayley Boulton¹, Suvobrata Mitra¹ ¹Nottingham Trent University

H - Coordination of posture and gait

P2-H-53 The association of confidence in walking, fear of falling and cautious gait in older adults

Presenter: **Maha Almarwani Maha Almarwani¹, Jennifer Brach²** ¹King Saud University, ²University of Pittsburgh

P2-H-54 Postural control following a sport-related concussion changes in response to continuous platform rotations

Presenter: Harry Bailey Harry Bailey¹, Cameron Kirk¹, Richard Mills², Richard Foster¹

¹Liverpool John Moores University, ²Manchester Metropolitan University

P2-H-55 Control of the trunk during walking: Early manifestations of antero-posterior angle changes

Presenter: Ioannis Bargiotas Ioannis Bargiotas¹, Juan Mantilla¹, Danping Wang¹, Pierre-Paul Vidal¹ ¹CNRS, SSA, University Paris Descartes (Paris IV)

P2-H-56 Dual tasks during treadmill walking in a fully immersive virtual environment

Presenter: Lars Peder Bovim

Lars Peder Bovim¹, Beate Gjesdal¹, Silje Maeland¹, Bård Bogen¹

¹Western Norway University of Applied Sciences

P2-H-57 Beat perception and production abilities affect responsiveness of temporal gait asymmetry to rhythmic auditory stimulation following stroke

Presenter: Lucas Crosby

Lucas Crosby¹, Jennifer Wong², Jessica Grahn³, Joyce Chen¹, Dina Brooks¹, Kara Patterson¹

¹University of Toronto, ²Toronto Rehabilitation Institute, ³Brain & Mind Institute - Western University

P2-H-58 Unwinding the control of walking turns

Presenter: Carolin Curtze Carolin Curtze¹

¹University of Nebraska Omaha

P2-H-59 Head anticipation during auditory instructed locomotion

Presenter: Felix Dollack

Felix Dollack¹, Hideki Kadone¹, Monica Perusquia Hernandez¹, Kenji Suzuki¹ ¹University of Tsukuba

P2-H-60 The effect of changes in body weight on postural control in obese and non-obese adults: A pilot study

Presenter: **Daniela Godoi Daniela Godoi¹, Rafael Santi¹** ¹Federal University of São Carlos (UFSCar)

P2-H-61 Repetitive experience touching door edges with fingers while walking through an aperture to improve fine-tuning of collision-avoidance behavior

Presenter: **Tomoki Hakamata Tomoki Hakamata¹**, Yoshitsugu Kondo², Takahiro Higuchi³

¹Tokyo Metropolitan University, ²Tokushima Bunri University, ³Department of Health Promotion Science, Tokyo Metropolitan University

P2-H-62 The influence of anxiety on motor strategy selection during a stepping down paradigm in older adults

Presenter: Nick Kluft

Nick Kluft¹, Sjoerd Bruijn¹, Jaap van Dieën¹, Mark Carpenter², Mirjam Pijnappels¹ ¹Vrije Universiteit Amsterdam, ²University of British Columbia

P2-H-63 Exploring the relationships between trunk sway, walking speed and gender

Presenter: Joel Lanovaz

Joel Lanovaz¹, Sahya Bhargava¹, Robert Downey¹, Alison Fedoriuk¹, Logan Michalishen¹, Serena Saini¹, Alison Oates¹ ¹University of Saskatchewan

P2-H-64 Motor deficits in Parkinson's disease are heterogeneously corrected for by Deep Brain Stimulation

Presenter: Christoph Maurer

Christoph Maurer¹

¹University Freiburg

P2-H-65 Slower reactive turning while walking in older adults: An association with cognitive-motor function

Presenter: Takahito Nakamura

Takahito Nakamura¹, Takahiro Higuchi², Touyou Kikumoto¹, Fumihiko Hoshi¹ ¹Saitama Prefectural University, ²Tokyo Metropolitan University

P2-H-66 Feedforward and feedback control components in the generation of automatic postural responses

Presenter: Julia Oliveira Nametala Azzi¹, Julia Oliveira¹, Daniel Coelho¹, Luis Teixeira¹ ¹University of São Paulo

P2-H-67 Postural reactions and spinal excitability modulation during balance perturbation following incomplete spinal cord injury

Presenter: Charlotte Pion

Charlotte Pion¹, Mélissa St-Pierre Bolduc², Zoé Miranda², Maureen MacMahon³, Dorothy Barthélemy² ¹Université du Québec à Montréal, ²Université de Montréal, ³CIUSSS Centre-Sud-de-l'île-de-Montréal

P2-H-68 The effects of cognitive interference on gait and turning in Huntington's disease

Presenter: Nicollette Purcell Nicollette Purcell¹, Jennifer Goldman¹, Bryan Bernard¹, Joan O'Keefe¹ ¹Rush University Medical Center

P2-H-69 Sensory contributions to head and lumbar sway in healthy individuals and those with mild traumatic brain injury

Presenter: Tiphanie Raffegeau

Tiphanie Raffegeau¹, Mindie Clark¹, Lucy Parrington², Robert Peterka², James Chesnutt², Laurie King², Peter Fino¹

¹University of Utah, ²Oregon Health & Science University

P2-H-70 Bridging the callosal gap in gait: A mechanistic evaluation of white matter's role in bilateral coordination

Presenter: Sutton Richmond

Sutton Richmond¹, Clayton Swanson¹, Tyler Whittier¹, Daniel Peterson², Brett Fling¹ ¹Colorado State University, ²Arizona State University P2-H-71 The contribution of intralimb kinetic coordination in lower limb to control of propulsion and weight support at a wide range of gait speed in young and elderly people

Presenter: Yusuke Sekiguchi

Yusuke Sekiguchi¹, Dai Owaki¹, Keita Honda¹, Shin-Ichi Izumi¹

¹Tohoku University

P2-H-72Postural balance at children survived after
posterior fossa tumor, acute lymphoblastic leukemia and
hematopoietic stem cell transplantationPresenter: Lori Ann Vallis
David Shulman¹, Jaykob Price¹, Lori Ann Vallis
¹University of Guelph

Presenter: Dmitry Skvortsov

Dmitry Skvortsov¹, Alexey Parshikov², Daria Zhuk², Vlad Nikulin², Serafima Chechelnitskaya², Vladimir Kasatkin³, Alexander Karelin³

¹Government University, ²Rehabilitation center "Russcoe Pole", ³Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology

P2-H-73 Tandem Walking Test kinematics - A normal data

Presenter: **Dmitry Skvortsov**

Dmitry Skvortsov¹, Alina Aisenshtein², Vladimir Kasatkin³, Anatoliy Shipilov²

¹Government University, ²Rehabilitation center "Russcoe Pole", ³Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology

P2-H-74 Postural adaptations in response to haptic forces during self-paced treadmill walking post-stroke

Presenter: Gianluca Sorrento

Gianluca Sorrento¹, Philippe Archambault², Joyce Fung²

¹Jewish Rehabilitation Hospital (CISSS-Laval), ²McGill University

P2-H-75 The role of vision in backward walking in patients with stroke

Presenter: Meng-Ru Tsai

Meng Ru Tsai¹, Pei-Yun Lee², Nai-Hua Kuo¹, Chih-Hung Chen¹, Sang-I Lin¹, Pei-Yun Lee²

¹National Cheng Kung University, ²National Taiwan University Hospital Bei-Hu Branch P2-H-76 Fluctuation of center of pressure and the affecting factors in young children

Presenter: Naomi Tsugita Naomi Tsugita¹, Syuhei Kobayashi¹, Shino Ogawa¹, Taiko Shiwa¹, Yasuko Funabiki¹ ¹Kyoto University

P2-H-77 Age-related changes in reactive arm responses following support surface perturbations

P2-H-78 Exploring the interaction between motor competence and dual task walking in adolescents

Presenter: **Benjamin Weedon**

Benjamin Weedon¹, Patrick Esser¹, Johnny Collett¹, Hooshang Izadi¹, Shawn Joshi¹, Andy Meaney¹, Anne Delextrat¹, Helen Dawes¹

¹Oxford Brookes University

P2-H-79 Mechanical consequences of trunk flexion on slopes during human walking

Presenter: Amy Wu

Amy Wu¹, Salman Faraji², Christopher Easthope³, Auke ljspeert²

¹Queen's University, ²Ecole Polytechnique Fédérale de Lausanne (EPFL), ³University Hospital Balgrist

I - Development of posture and gait

P2-I-81 Characteristics of postural adjustments in sitting reach task in adults with cerebral palsy

, Presenter: **Yui Sato**

Yui Sato¹, Hideyuki Tashiro¹, Naoki Kozuka¹ ¹Sapporo Medical University

P2-I-82 Balance recovery following mediolateral pelvis perturbations during slow walking

Presenter: Michelle van Mierlo

Michelle van Mierlo¹, Boris Ruwe¹, Mark Vlutters¹, Edwin H. F. van Asseldonk¹, Herman van der Kooij¹ ¹University of Twente

J - Developmental disorders

P2-J-83 Reproducibility of the Timed Up and Go (TUG) standard and dual task versions in school-aged children with and without coordination difficulties

Presenter: Leanne M Johnston Leanne Johnston¹, Breanna Raatz¹, Gemma Allinson¹, Rosalee Dewar¹, Sally Hannah¹ ¹University of Queensland

P2-J-84 Will my child walk? New insights into the relationship between lower limb muscle strength and gross motor function in children with spina bifida myelomeningocele

Presenter: Leanne Johnston

Leanne Johnston¹, Ashleigh Gehrig¹, Nicole Thomas² ¹University of Queensland, ²Children's Health Queensland Hospital & Health Service

P2-J-85 A retrospective study towards characterizing the long-term effects of single-event multilevel surgery on gait consistency in children with spastic bilateral cerebral palsy

Presenter: Rosa Visscher

Rosa Visscher¹, Nadine Hasler¹, Marie Freslier², Navrag Singh¹, Reinald Brunner², Erich Rutz²

¹ETH Zurich, ²University Children's Hospital Basel

P2-J-86 Functional gait in children with developmental coordination disorder compared to typically developing children

Presenter: Vivian Weerdesteyn Rosanne Kuijpers¹, Ellen Smulders¹, Vivian Weerdesteyn¹ ¹Radboud University Medical Center

K - Devices to improve posture and gait

P2-K-87 Non-invasive spinal cord stimulation for the treatment of motor symptoms of Parkinson`s disease

Presenter: María Alamos

Maria Alamos¹, Aquiles Martinez², Carlos Juri¹, Rómulo Fuentes²

¹Pontificia Universidad Catolica de Chile, ²Universidad de Chile

P2-K-88 Effect of postural insoles on iliotibial band syndrome in runners: a multicentre prospective study

Presenter: Isabelle Barnier

Isabelle Barnier¹, Marie-Emmanuelle Rouchon², Frédéric Viseux³

¹Posturopody Class 2016/17, Connaissance & Evolution, FR75012, ²Posture Lab, FR75012 Paris, ³LAMIH - University of Valenciennes - France

P2-K-89 Effect of learning to use a single-point cane on gait and cognitive demands of walking in people with mild to moderate Alzheimer's dementia

Presenter: Susan Hunter

Susan Hunter¹, Alison Divine², Humberto Omana¹, Walter Wittich³, Andrew Johnson¹, Keith Hill⁴, Jeff Holmes¹

¹University of Western Ontario, ²University of Leeds, ³University of Montreal, ⁴Curtin University

P2-K-90 The effect of Arctic Grip contact area on footwear performance during winter walking

Presenter: **Kristie Liu Kristie Liu¹, Tilak Dutta²** ¹University of Toronto, ²Toronto Rehabilitation Hospital

P2-K-91 The effect of real-time biofeedback on lumbar spine and lower limb kinematics and kinetics during repetitive lifting

Presenter: Yanto Naude Yanto Naudé¹, Grant Mawston¹, Jeff Kilby¹, Mark Boocock¹

¹Auckland University of Technology

P2-K-92 The effects of non-invasive transcranial brain current stimulation (tDCS) on posture over stable and unstable surfaces in people with Parkinson's: A randomised double-blind sham-controlled crossover study

Presenter: Jing Qi

Jing Qi¹, Graham Kerr², Karen Sullivan², Simon Smith³, Marcus Meinzer⁴

¹Institute of Health and Biomedical Innovation, ²Queensland University of Technology, ³University of Queensland, ⁴UQ Centre for Clinical Research P2-K-93 Examining the long term effects of using the anchor system on postural control during walking

Presenter: Kirat Shukla

Kirat Shukla¹, Joel Lanovaz¹, Alison Oates¹ ¹University of Saskatchewan

P2-K-94 A feasibility study for gait training with footfloor contact angle feedback

Presenter: Kathleen Sienko

Christina Ma¹, Tian Bao², Victor Le², April Chambers³, Peter Shull⁴, Yong-Ping Zheng⁵, Rakié Cham³, Kathleen Sienko²

¹Jönköping University, ²University of Michigan, ³University of Pittsburgh, ⁴Shanghai Jiao Tong University, ⁵The Hong Kong Polytechnic University

L - Effect of medication on posture and gait

P2-L-95 The effects of levodopa on prefrontal activation during gait in individuals with Parkinson's disease

Presenter: Moria Dagan

Moria Dagan¹, Hagar Bernad-Elazari², Talia Herman², Rachel Harrison³, Junhong Zhou⁴, Shiran Shustak², Marina Brozgol², Nir Giladi², Anat Mirelman², Brad Manor⁴, Jeff Hausdorff²

¹Tel Aviv University, ²Tel-Aviv Sourasky Medical Center, ³Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, ⁴Harvard Medical School

P2-L-96 The effects of dopaminergic drug on turning in people with and without Parkinson's disease

Presenter: **Douglas Martini**

Douglas Martini¹, Graham Harker¹, John Nutt¹, Fay Horak¹

¹Oregon Health & Science University

P2-L-97 Objective gait and balance outcome measures for efficacy of cyclodextrin treatment in Niemann-Pick Type C (NPC): a case series

Presenter: Joan Ann O'Keefe

Joan O'Keefe¹, Jessica Joyce¹, Nicollette Purcell¹, Kathryn Wrobel¹, Medha Parulekar¹, Elizabeth Berry-Kravis¹ ¹Rush University Medical Center

ToC 106

M - Exercise and physical activity

P2-M-98 Lifestyle integrated functional exercise for inpatients suffering from cognitive impairment - a transitional approach to prevent hospitalized older adults from functional decline

Presenter: Nacera Belala Nacera Belala¹, Michael Schwenk¹, Clemens Becker² ¹Heidelberg University, ²Robert-Bosch-Krankenhaus

P2-M-99 Association between motor skills and physical activity in preschoolers

Presenter: Becky Breau Becky Breau¹, Berit Steenbock¹, Marvin Wright¹, Christoph Buck¹, Mirko Brandes¹

¹Leibniz Institute for Prevention Research and Epidemiology

P2-M-100 A validation and comparison of Actigraph GT9X Link and RunScribe Plus accelerometers for the estimation of skeletal loading during habitual physical activities

Presenter: **Simon Higgins Simon Higgins¹**, **Srikant Vallabhajosula¹** *¹Elon University*

P2-M-101 The beneficial effects of multisensory balance training in older adults: A systematic review

Presenter: **Shu-Chun Lee Shu-Chun Lee¹, Li-Yun Yeh**¹ ¹Taipei Medical University

P2-M-102 The effect of bed rest on balance control in healthy adults: A systematic scoping review

Presenter: **Tyler Saumur Tyler Saumur¹, Sarah Gregor¹, George Mochizuki¹, Avril Mansfield², Sunita Mathur¹**

¹University of Toronto, ²Toronto Rehabilitation Institute

P2-M-103 Effect of slope squat on lower-extremity muscle activity

Presenter: **Jennifer Davies** Yi Wan¹, Jianqiao Wang², Jennifer Davies¹, Kate Button¹, Mohammad Al-Amri¹

¹Cardiff University, ²China Rehabilitation Research Center

N - Falls and fall prevention

P2-N-104 A novel multivariate approach to characterise stair-negotiating behaviour and detect fall risk in older adults

Presenter: Thijs Ackermans

Thijs Ackermans¹, Natasha Francksen¹, Raul Casana-Eslava¹, Carolyn Lees¹, Vasilios Baltzopoulos¹, Paulo Lisboa¹, Mark Hollands¹, Thomas O'Brien¹, Constantinos Maganaris¹

¹Liverpool John Moores University

P2-N-105 Walking for better outcomes and recovery: The effect of WALK-FOR in preventing hospitalassociated functional decline among older adults

Presenter: Maayan Agmon

Maayan Agmon¹, Anna Zisberg¹, Yaniv Cohen¹, Efrat Gil², Yehudith Chayat³, Chedva Levin⁴, Nurit Gur-Yaish¹, Debbi Rand⁵

¹University of Haifa, ²Clalit Health Services, Israel, ³Hemek Medical Center, ⁴Lev Academic Center, Jerusalem, ⁵Tel-Aviv University

P2-N-106 Lateral loss of balance among one-time fallers and recurrent fallers reveals contrasted differences in step thresholds and spatiotemporal parameters compared to non-fallers

Presenter: Shani Batcir

Shani Batcir¹, Guy Shani¹, Amir Shapiro¹, Yoav Gimmon¹, Ilan Kurz¹, Itshak Melzer¹ ¹Ben-Gurion University

P2-N-107 Falling down - limbs and trunk muscles responses to vertical perturbations

Presenter: **Desiderio Cano Porras**

Desiderio Cano Porras¹, Jesse Jacobs², Rivka Inzelberg³, Ofer Keren¹, Gabriel Zeilig¹, Meir Plotnik¹ ¹Sheba Medical Center, ²University of Vermont, ³Tel Aviv University

P2-N-108 Falls and locomotor capabilities in lower limb amputees. First results of a retrospective study from the MOTU project

Presenter: Lorenzo Chiari

Lorenzo Chiari¹, Serena Moscato¹, Pericle Randi², Luca Palmerini¹, Angelo Davalli², Pierpaolo Palumbo¹ ¹Alma Mater Studiorum - Universita' di Bologna, ²INAIL Prosthesis Centre

P2-N-109 Measuring foot clearance on outdoor walkways

Presenter: Ghazaleh Delfi

Ghazaleh Delfi¹, Megan Kamachi¹, Jose Beltran², Tilak Dutta¹

¹Toronto Rehabilitation Institute / University of Toronto, ²Toronto Rehabilitation Institute

P2-N-110 Wearable sensor detection of real-world trips in at-fall risk community dwelling older adults

Presenter: Shirley Handelzalts

Shirley Handelzalts¹, Neil Alexander¹, Linda Nyquist², Debra Strasburg¹, Nicholas Mastruserio², Lauro Ojeda¹ ¹University of Michigan

P2-N-111 Static balance following a 12-week attentionally focused balance training intervention: Preliminary data

Presenter: Lauren Higgins

Lauren Higgins¹, Masa Yamada¹, Ruth Stout¹, Danielle Felsberg¹, Chanel LoJacono¹, Sean Cochran¹, Amanda Barclift¹, John Palazzolo¹, Jeff Labban¹, Jeffrey Fairbrother¹, Christopher Rhea¹, Louisa Raisbeck¹ ¹University of North Carolina, Greensboro

P2-N-112 Joint angle variance in the bipedal linked chain during curb negotiation

Presenter: Ashwini Kulkarni

Ashwini Kulkarni¹, HyeYoung Cho¹, Chuyi Cui¹, Shirley Rietdyk¹, Satyajit Ambike¹, Fabio Barbieri² ¹Purdue University, ²São Paulo State University (UNESP)

P2-N-113 Functional Gait Assessment (FGA) after a 12-week attentionally focused balance training intervention: Preliminary data

Presenter: Danielle Felsberg

Danielle Felsberg¹, Lauren Higgins¹, Ruth Stout¹, Masahiro Yamada¹, Sean Cochran¹, Chanel LoJacono¹, Amanda Barclift¹, John Palazzolo¹, Jeff Labban¹, Jeffrey Fairbrother¹, Christopher Rhea¹, Louisa Raisbeck¹ ¹University of North Carolina, Greensboro

P2-N-114 Falling for it: The effects of anxiety on balance control

Presenter: Anna Fielding

Anna Fielding¹, Will Young¹, Andrew Parton¹ ¹Brunel University P2-N-115Effects of step direction and stimulus modality
on step reactions during a prolonged motor-cognitive
task in older adultsP2-N-121
Fall risk and falls are related to
spatiotemporal gait asymmetry in older adults: Effect of
gait speed

Presenter: Eleftheria Giannouli

Eleftheria Giannouli¹, Wiebren Zijlstra¹ ¹German Sport University Cologne

P2-N-116 Association of walk ratio during normal gait speed and fall in community-dwelling elderly people

Presenter: Sho Nakakubo

Sho Nakakubo¹, Takehiko Doi¹, Kota Tsutsumimoto¹, Min-Ji Kim¹, Satoshi Kurita¹, Hideaki Ishii¹, Hiroyuki Shimada¹

¹National Center for Geriatrics and Gerontology

P2-N-117 Validating the rate of perceived stability scale to measure balance training intensity among older adults

Presenter: Ann Reinthal

M Ann Reinthal¹, Debbie Espy¹, Lorenzo Bianco¹, Kathryn Kroszkewicz¹ ¹Cleveland State University

P2-N-118 Transfer and retention effects of perturbation based treadmill training in older adults

Presenter: Markus Rieger

Markus Rieger¹, Selma Papegaaij², Mirjam Pijnappels¹,Presenter: Christopher EasthopeFrans Steenbrink², Jaap van Dieën¹Christopher Easthope¹, Niklas Ignasiak², Mathias¹Vrije Universiteit Amsterdam, ²Motek Medical BVBannwart¹, Sara Bayer¹, Armin Curt¹, Georg Rauter³,
Marc Bolliger¹

P2-N-119 Elderly fallers and non-fallers adjust their posture in anticipation of perturbations

Presenter: Thomas Robert

Thomas Robert¹, Charlotte Le Mouel², Romain Tisserand³, Romain Brette⁴

¹Université de Lyon, ²Max Planck Institute of Intelligent Systems, ³University of British Columbia, ⁴Sorbonne Université, INSERM, CNRS, Institut de la Vision Kristen Hollands¹, Pornproi

P2-N-120 The influence of fear priming on whole-body reaching in young and older adults

Presenter: Alexander Stamenkovic

Alexander Stamenkovic¹, Susanne van der Veen¹, James Thomas¹ ¹Virginia Commonwealth University

2019 ISPGR WORLD CONGRESS

C 108

🧹 ToC

Presenter: **Brian Street Brian Street**¹ ¹California State University, Bakersfield

P2-N-122 Lateral balance capacity after external perturbation in persons with chronic stroke

Presenter: **Hideyuki Tashiro Hideyuki Tashiro¹, Yui Sato¹, Naoki Kozuka**¹

¹Sapporo Medical University

P2-N-123 Do falls precede or follow changes in selfefficacy scores regarding falls and gait in community dwelling older adults?

Presenter: **Roel Weijer** Roel Weijer¹, Marco Hoozemans¹, Jaap van Dieën¹, Mirjam Pijnappels¹ ¹Vrije Universiteit Amsterdam

O - Habilitation & rehabilitation

-ר	P2-O-124 Mediolateral constraints during overhead
	unloading result in altered gait dynamics and balance
	regulation

¹University Hospital Balgrist, ²Chapman University, ³University Basel

P2-O-125 Immediate effects of Voluntary-induced Stepping Response (VSR) training on protective stepping in persons with chronic stroke: A randomized control trial

Kristen Hollands¹, Pornprom Chayasit², Mark Hollands³, Rumpa Boonsinsukh²

¹University of Salford, ²Srinakharinwirot University, ³Liverpool John Moores University

P2-O-127 Effects of modified exercise programme for improving axial rigidity and turning dysfunction in individuals with Parkinson's disease

Presenter: Fuengfa Khobkhun

Fuengfa Khobkhun¹, Mark Hollands¹, Amornpan Ajjimaporn²

¹Liverpool John Moores University, ²Mahidol University

P2-O-128 Differences in lateral symmetry of muscle synergies between acute post-stroke patients undergoing robot-assisted therapy and conventional therapy

Presenter: Chun Kwang Tan

Chun Kwang Tan¹, Hideki Kadone¹, Hiroki Watanabe¹, Aiki Marushima¹, Yasushi Hada¹, Masashi Yamazaki¹, Yoshiyuki Sankai¹, Kenji Suzuki¹ ¹University of Tsukuba

P - Modeling

P2-P-129 Visual effects on human balancing responses to support surface translation

Presenter: Emre Akcay

Emre Akcay¹, Vittorio Lippi², Lorenz Assländer³, Thomas Mergner²

¹Kocaeli University, ²Neurological University Clinics, Freiburg, ³University of Konstanz

P2-P-130 Expanding a model of the dynamic Margin of Stability to evaluate balance control following supportsurface perturbations

Presenter: **Keaton Inkol Keaton Inkol¹, Lori Ann Vallis¹** ¹University of Guelph

Q - Neurological diseases

P2-Q-131 Obstacle crossing in fallers with and without Parkinson's disease; influence of attentional demand

Presenter: Lisa Alcock

Lisa Alcock¹, Brook Galna¹, Richard Foster², Jeff Hausdorff³, Sue Lord⁴, Lynn Rochester⁵

¹Newcastle University, ²Liverpool John Moores University, ³Tel-Aviv Sourasky Medical Center, ⁴Auckland University of Technology, ⁵Institute of Neuroscience, Newcastle University

P2-Q-132 Parkinson's disease delays predictable visual cue processing although does not affect complex and non-predictable visual cue processing in postural control

Presenter: José Barela

Jose Barela¹, Caio Cruz², Flávia Doná³, Vitor Amaral⁴, Henrique Ferraz³, Ana Barela⁴

¹São Paulo State University (UNESP), ²University of São Paulo, ³Federal University of São Carlos (UFSCar), ⁴Cruzeiro do Sul University

P2-Q-133 Impact of attentional abilities on step initiation in patients with Parkinson's disease with and without freezing of gait

Presenter: Madli Bayot

Madli Bayot¹, Aurore Braquet¹, Céline Tard¹, Luc Defebvre¹, Kathy Dujardin¹, Arnaud Delval¹

¹University of Lille - Inserm U1171-Degenerative and Vascular Cognitive Disorders

P2-Q-134 Postural biomechanical predictors of subjective and objective measures of severity of freezing of gait in Parkinson's disease

Presenter: Daniel Coelho

Daniel Coelho¹, Caroline Souza¹, Carla Silva-Batista¹, Andrea de Lima-Pardini², Alexandre Bastos², Luis Teixeira¹

¹University of São Paulo, ²Federal University of ABC

P2-Q-135 Is mediolateral dynamic balance in Parkinson's disease similar between freezers and non-freezers?

Presenter: Bauke Dijkstra

Bauke Dijkstra¹, Moran Gilat¹, L. Eduardo Cofré Lizama², Sabine Verschueren¹, Alice Nieuwboer¹ ¹KU Leuven, ²University of Melbourne

P2-Q-136 Factors related to unanticipated obstacle negotiation success: Association with Parkinson's disease and motor planning

Presenter: Irina Galperin

Irina Galperin¹, Eran Gazit², Ilan Kurtz¹, Topaz Sharon², Marina Brozgol², Nir Giladi², Anat Mirelman², Jeff Hausdorff²

¹Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky, ²Tel-Aviv Sourasky Medical Center P2-Q-137 Oxygenated hemoglobin concentration leve during usual walking and obstacle course in people with Parkinson's Disease (PD)

Presenter: Lilian Gobbi

Lilian Gobbi¹, Diego Orcioli-Silva¹, Priscila Sousa¹, Nubia Conceição¹, Victor Beretta¹, Ellen Lirani-Silva¹, Rodrigo Vitório¹ ¹São Paulo State University (UNESP)

P2-Q-138 Characterization of novel centre of pressure cyclogram measures during double support phase of go in people with stroke

Presenter: Sarah Gregor

Sarah Gregor¹, Julie Vaughan-Graham², Kara Patterso ¹University of Toronto, ²Toronto Rehabilitation Institute

P2-Q-139 Influence of ankle-foot orthosis with different type of joint on walking parameters in stroke patients

Presenter: Naruhito Hasui

Naruhito Hasui¹, Naomichi Mizuta¹, Yasutaka Higa², Yasutada Yamamoto², Ayaka Matsunaga², Tomoki Nakatani², Masako Tsutsumi², Junji Taguchi², Yohei Okada³

¹Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, ²Takarazuka Rehabilitation Hospital, ³University of Kio

P2-Q-140 Can quantitative gait parameters serve as progression marker of Parkinson's disease? A longitudinal study over 5 years

Presenter: Markus Hobert

Markus Hobert¹, Susanne Nussbaum², Tanja Heger², Daniela Berg¹, Walter Maetzler¹, Sebastian Heinzel¹ ¹Christian-Allbrechts-University of Kiel, ²University of Tuebinge

P2-Q-141 What can EMG tell us about the neuromotor control of gait in Parkinson's disease?

Presenter: Aisha Islam

Aisha Islam¹, Lisa Alcock¹, Kianoush Nazarpour¹, Lynn Rochester², Annette Pantall¹

¹Newcastle University, ²Institute of Neuroscience, Newcastle University

P2-Q-142 Split-Belt Treadmill walking in people with Parkinson's disease: A systematic review

Presenter: Seuthe Jana

Jana Seuthe¹, Nicholas D'Cruz², Pieter Ginis², Burkhard

	-Allbrechts-University of Kiel, ² KU Leuven, ³ Univers Schleswig Holstein, Christian-Albrechts University
	3 Functional gait disorders and the broken r phenomenon
Diego Ka Castro², Adolfo B	r: Diego Kaski aski ¹ , Denise Lin ² , Akila Ramamoorthy ² , Pat Amy Edwards ² , Jan Coebergh ³ , Mark Edwa pronstein ² y College London, ² Imperial College London, ³ St Hospital
	4 Central cholinergic activity and risk of fal with Parkinson's disease and freezing of gai
Giovann Putzolu ¹ Mirelma	r: Giovanna Lagravinese a Lagravinese ¹ , Gaia Bonassi ¹ , Martina , Alessandro Botta ¹ , Carola Cosentino ¹ , Ana n ² , Elisa Pelosin ¹ , Laura Avanzino ¹ y of Genoa, ² Tel-Aviv Sourasky Medical Center
	5 Why do asymmetric gait patterns persist of in stimulation in Parkinson's disease?
Deepak Christiar Navrag S	r: Deepak Ravi Ravi ¹ , Michelle Gwerder ¹ , Niklas Ignasiak ² , h Baumann ³ , Mechtild Uhl ³ , William Taylor ¹ , Singh ¹ ch, ² Chapman University, ³ University Hospital Zur
	6 The effect of closed-loop tactile feedback ation in people with Parkinson's disease with of Gait
Presenter Christiar Mancini ^ª	ຕ Christian Schlenstedt າ Schlenstedt ¹ , Daniel Peterson², Martina
and spat	7 Clinical meaningful thresholds of tempor ial gait parameters in the context of the ial diagnosis in gait ataxia

P2-Q-148 Quantity and quality of gait in PD, MS and healthy people in a community setting

Presenter: Vrutangkumar Shah

Vrutangkumar Shah¹, James McNames², Patricia Carlson-Kuhta¹, Rebecca Spain¹, John Nutt¹, Mahmoud El Gohary³, Fay Horak¹, Carolin Curtze⁴

¹Oregon Health & Science University, ²Portland State University, ³APDM, ⁴University of Nebraska Omaha

P2-Q-149 Antero-posterior foot placement is disturbed in people with Parkinson's disease: Preliminary data

Presenter: Lucas Simieli

Lucas Simieli¹, Sjoerd Bruijn², Erwin E van Wegen³, Fabio Barbieri¹, Jaap van Dieën²

¹São Paulo State University (UNESP), ²Vrije Universiteit Amsterdam, ³Amsterdam Universitair Medisch Centrum

P2-Q-150 Predictors of subjective and objective measures of severity of freezing of gait in Parkinson's disease

Presenter: Caroline Souza

Caroline Souza¹, Acacio Neto¹, Daniel Coelho¹, Andrea Lima-Pardini², Raquel Marquesini¹, Alana Batista¹, Egberto Barbosa¹, Carlos Ugrinowitsch¹, Luis Teixeira¹, Carla Silva-Batista¹

¹University of São Paulo, ²Federal University of ABC

P2-Q-151 Natural progression of gait impairment in early Parkinson's disease: A six-year prospective incident cohort study

Presenter: Joanna Wilson

Joanna Wilson¹, Alison Yarnall¹, Sue Lord², Lisa Alcock¹, Rosie Morris³, David Burn¹, Lynn Rochester⁴, Brook Galna¹

¹Newcastle University, ²Auckland University of Technology, ³Oregon Health & Science University, ⁴Institute of Neuroscience, Newcastle University

P2-Q-152 MTBI and PTSD are dissociable using novel posturography assessments

Presenter: W.Geoffrey Wright

W. Geoffrey Wright¹, Amanda Haskell², Labeeby Servatius², Justin Handy³, Richard Servatius²

¹Temple University, ²Veterans Administration Medical Center (VAMC), ³NSMRL

P2-Q-153 Frailty status predicts falls in early Parkinson's disease

Presenter: Alison Yarnall

Alison Yarnall¹, Shauna Holland¹, Rosie Morris², Sue Lord³, Brook Galna¹, Lynn Rochester⁴

¹Newcastle University, ²Oregon Health & Science University, ³Auckland University of Technology, ⁴Institute of Neuroscience, Newcastle University

R - Orthopedic diseases and injuries

P2-R-154 Collegiate athletes with a conservative gait strategy are more likely to sustain a lower extremity musculoskeletal injury following concussion

Presenter: Jessie Oldham

Jessie Oldham¹, David Howell², Christopher Knight³, Jeremy Crenshaw³, Thomas Buckley³

¹Boston Children's Hospital, ²Children's Hospital Colorado, ³University of Delaware

T - Psychiatric disorders

P2-T-155 Short postural training affects stability in children with autism spectrum disorders

Presenter: **Simona Caldani Simona Caldani¹**, **Maud Tisne¹**, **Paola Atzori¹**, **Hugo Peyre¹**, **Richard Delorme¹**, **Maria Pia Bucci¹** *¹Hopital Robert Debré*

U - Robotics

P2-U-156 Bilateral reshaping of gait coordination in hemiparetic stroke patients after early robotic intervention

Presenter: Sandra Puentes

Sandra Puentes¹, Hideki Kadone¹, Hiroki Watanabe¹, Yasushi Hada¹, Tomoyuki Ueno¹, Aiki Marushima², Yoshiyuki Sankai¹, Kenji Suzuki¹

¹University of Tsukuba, ²Faculty of Medicine, University of Tsukuba Hospital

V - Sensorimotor control

P2-V-157 Effects of ankle muscle fatigue and visual behavior on postural sway in young adults

Presenter: Fabio Barbieri

Fabio Barbieri¹, Tiago Penedo¹, Lucas Simieli¹, Ricardo

Barbieri², Alessandro Zagatto¹, Jaap van Dieën³, Mirjan Pijnappels³, Sérgio Rodrigues¹, Paula Polastri¹

¹São Paulo State University (UNESP), ²Graduate Program in Physical Education and Sport at School of Physical Education and Sport of Ribeir, ³Vrije Universiteit Amsterdam

P2-V-158 Lightly gripping a motionless handle: Study of postural sway decrease and correlation between transient force changes applied to the handle and balance

Presenter: Angélina Bellicha

Angélina Bellicha¹, Andrés Trujillo-León¹, Wael Bachta¹ ¹Sorbonne Université - ISIR

P2-V-159 Dynamic reweighting of three modalities for sensor fusion after repetitive head impact

Presenter: Jaclyn Caccese

Jaclyn Caccese¹, Fernando dos Santos¹, John Jeka¹ ¹University of Delaware

P2-V-160 Threat-related changes in postural control in virtual environments

Presenter: Jernej Camernik Jernej Camernik¹, Sanja Kezic², Jan Babic¹ ¹Institute Jozef Stefan, ²Jozef Stefan Institute

P2-V-161 The effects of lighting level on balance in dancers

Presenter: Elizabeth Coker

Elizabeth Coker¹, Terry Kaminski² ¹NYU/Tisch School of the Arts, ²Teachers College of Columbia University

P2-V-162 Gender and form of thin plantar retrocapital metatarsal bar stimulations influence on postural control

Presenter: Marc Janin

Marc Janin¹ ¹Université de Pau et des pays L'adour & Podiatrist office Poitiers

P2-V-163 The role of the vestibular system in the preparation of arm movements

Presenter: Michael Kennefick

Michael Kennefick¹, Joel Burma¹, Paige Copeland¹, Paul van Donkelaar¹, Chris McNeil¹, Brian Dalton¹ ¹University of British Columbia Okanagan Presenter: Raabeae Aryan Raabeae Aryan¹, Andrew Huntley², Elizabeth Inness², Kara Patterson¹, Avril Mansfield² ¹University of Toronto, ²Toronto Rehabilitation Institute

ToC 112

n	P2-V-164 Support Surface Translation - Sway respon	nses
	of vestibular able subjects resemble those of vestibul	lar
	loss subjects	

Presenter: Thomas Mergner

Thomas Mergner¹, Emre Akcay², Vittorio Lippi¹, Lorenz Assländer³

¹Neurological University Clinics, Freiburg, ²Kocaeli University, ³University of Konstanz

P2-V-165 The effects of remote subthreshold stimulation on skin sensitivity in the lower extremity

Presenter: **Emma Plater Emma Plater¹**, **Ryan Peters²**, **Leah Bent¹** ¹University of Guelph, ²University of Calgary

P2-V-166 Electrocortical dynamics related to ankle proprioception reweighting

Presenter: Martin Simoneau Martin Simoneau¹, Catherine Bluteau¹, Anctil Noémie¹ ¹Université Laval

P2-V-167 Collision avoidance between two walkers: Reduced avoidance behaviour in previously concussed athletes

Presenter: Natalie Snyder Natalie Snyder¹, Michael Cinelli¹, Victoria Rapos¹, Armel Crétual², Anne-Hélène Olivier² ¹Wilfrid Laurier University, ²University of Rennes / Inria

P2-V-168 Virtual time-to-contact indicates deficits in state prediction in women with multiple sclerosis

Presenter: **Tyler Whittier Tyler Whittier**¹, Sutton Richmond¹, Andrew Monaghan¹, **Clayton Swanson**¹, Brett Fling¹

¹Colorado State University

W - Tools and methods for posture and gait analysis

P2-W-169 Test-retest reliability of frequency-domain measures of balance among people with sub-acute stroke

P2-W-170 Evaluation of gait in the non-rigid XoSoft exo-skeleton in stroke and SCI patients

Presenter: Chris Baten

Chris Baten¹, Corien Nikamp¹, Leendert Schaake¹, Jaap Buurke¹

¹Roessingh Research and Development

P2-W-171 Development of a clinical scale to assess retropulsion in neurological disorders

Presenter: Jeannine Bergmann

Jeannine Bergmann¹, Carmen Krewer¹, Eberhard Koenig¹, Friedemann Müller¹, Klaus Jahn²

¹Schön Klinik Bad Aibling, ²Ludwig-Maximillians Universität München

P2-W-172 The inter relations between arm-leg, arm-arm and leg-leg coordination during human walking

Presenter: Maya Cohen

Maya Cohen¹, Uri Rosenblum², Desiderio Cano Porras¹, Oran Ben Gal², Meir Plotnik¹

¹Sheba Medical Center, ²Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky

P2-W-173 Can an Inertial Measurement Unit assess the Shank-to-Vertical Angle in healthy individuals?

Presenter: Lysanne de Jong Lysanne de Jong¹, Yvette Kerkum², Jeske Jansens¹, Noel Keijsers¹

¹Sint Maartenskliniek, ²OIM Orthopedie

P2-W-174 Mobility disability in older adults through the eyes of the tandem walk

Presenter: Natalie Ganz

Natalie Ganz¹, Eran Gazit¹, Aron Buchman², Anat Mirelman¹, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²Rush Alzheimer's Disease Center

P2-W-175 Thinking about walking: A new approach to quantifying gait initiation using a wearable sensor

Presenter: Eran Gazit

Eran Gazit¹, Marina Brozgol¹, Pablo Cornejo Thumm¹, Robert Dawe², Thomas Curran², Anat Mirelman¹, Jeff Hausdorff¹, Aron Buchman²

¹Tel-Aviv Sourasky Medical Center, ²Rush Alzheimer's Disease Center P2-W-176 The association between physical capacity, physical performance, and fall risk in young seniors

Presenter: Katharina Gordt

Katharina Gordt¹, Anisoara Paraschiv-Ionescu², Anna Mikolaizak³, Kristin Taraldsen⁴, Sabato Mellone⁵, Ronny Bergquist⁴, Jeanine Van Ancum⁶, Corinna Nerz³, Miriam Pijnappels⁶, Andrea Maier⁶, Jorunn Helbostad⁴, Beatrix Vereijken⁴, Clemens Becker³, Kamiar Am

¹Network Aging Research, ²Ecole Polytechnique Fédérale de Lausanne (EPFL), ³Robert-Bosch-Krankenhaus, ⁴Norwegian University of Science and Technology Trondheim, ⁵University of Bologna, ⁶Vrije Universiteit Amsterdam

P2-W-177 Gait analysis by the use of handy threedimensional acceleration sensors

Presenter: Kazuo Ishikawa

Kazuo Ishikawa¹, Aya Asari¹, Hiromoto Kimura¹ ¹Japanese Red Cross Akita Hospital

P2-W-178 Development and content validity of a scale assessing lateropulsion in stroke patients: The SCALA

Presenter: Dominic Pérennou

Dominic Pérennou¹, Anais Odin², Emmuelle Clarac², Andréa Kistner², Shenhao Dai², Maud Barbado², Emilie Chipon², Carole Vuillerot², Jean-Luc Bosson², Alexandre Moreau-Gaudry², Céline Piscicelli¹

¹University Hospital Grenoble-Alpes, ²Grenoble Alpes University Hospital

P2-W-179 Impact of a thin plantar orthopaedic insert on posture and locomotion

Presenter: Carole Puil

Carole Puil¹, Anne Hélène Olivier², Armel Crétual³ ¹Rennes University - IFPEK - M2S Laboratory, ²Rennes University -INRIA - M2S Laboratory, ³University of Rennes / Inria

P2-W-180 Deterioration of specific aspects of gait during the instrumented 6-minute walk test among people with multiple sclerosis

Presenter: Shirley Shema Shiratzky

Shirley Shema Shiratzky¹, Eran Gazit¹, Ruopeng Sun², Keren Regev¹, Arnon Karni¹, Jacob Sosnoff², Anat Mirelman¹, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²University of Illinois at Urbana-Champaign

P2-W-181 Preliminary evaluation of a self-guided fall risk assessment tool for older adults

Presenter: Ruopeng Sun

Ruopeng Sun¹, Roberto Aldunate¹, Vignesh Paramathayalan², Rama Ratnam¹, Sanjiv Jain³, Daniel Morrow¹, Jacob Sosnoff¹

¹University of Illinois at Urbana-Champaign, ²Robert-Bosch-Krankenhaus, ³Carle Foundation Hospital

X - Vestibular function and disorders

P2-X-182 Body spatial representation in unilateral vestibular patients: Evolution before and after surgery

Presenter: Liliane Borel

Liliane Borel¹, Mathilde Bachelard-Serra², Laurence Bernard-Demanze², Jean-Pierre Lavieille², Arnaud Saj³, Jacques Honoré⁴

¹CNRS & Aix-Marseille Univ, ²Hôpital de la Conception, AP-HM, ³Geneva University Hospitals, ⁴Université de Lille

P2-X-183 The effect of roll circular vection on the subjective postural horizontal

Presenter: Taylor Cleworth

Taylor Cleworth¹, John H. Allum², Emma Nielsen³, Mark Carpenter³

¹University of Waterloo, ²University of Basel Hospital, ³University of British Columbia

P2-X-184 EEG correlates of postural dizziness of aging

Presenter: Richard Ibitoye

Richard Ibitoye¹, Patricia Castro¹, Onur Guven¹, Amy Edwards¹, Qadeer Arshad¹, Adolfo Bronstein¹ ¹Imperial College London

P2-X-185 Quantitative gait analysis of acoustic neuroma patients using portable accelerometer

Presenter: **Koh Koizumi Koh Koizumi¹, Kazuo Ishikawa²** ¹Akita University, ²Japanese Red Cross Akita Hospital

P2-X-186 Phase- and speed-dependent modulation of vestibulo-ocular reflexes during walking

Presenter: **Max Wühr Max Wühr¹, Haike Dietrich¹** ¹Ludwig-Maximillians Universität München

P2-X-187 Optimal treatment period for vestibular balance rehabilitation in patients with chronic unilateral vestibular dysfunction

Presenter: Toshiaki Yamanaka

Toshiaki Yamanaka¹ ¹Nara Medical University

P2-X-188 The utricular hypofunction of patients with type 2 diabetes mellitus has a subtle influence on the static postural control with neck extension

Presenter: Kathrine Jáuregui-Renaud

Kathrine Jáuregui-Renaud¹, Catalina Aranda-Moreno¹, Julio Villaseñor-Moreno¹, María Giraldez-Fernandez¹, Martha Gutierrez-Castañeda¹, Ignacio Figueroa-Padilla¹, Ana Saucedo-Zainos¹ ¹Instituto Mexicano Del Seguro Social

P2-X-189 Detecting alterations in head movements in individuals with vestibulopathy of varying etiology

Presenter: Brian Loyd

Lee Dibble¹, Brian Loyd¹, Annie Fangman¹, Janie Savier-Steiger¹, Mark Lester², Serene Paul³

¹University of Utah, ²Army-Baylor University, ³University of Sydney

P2-X-190 Can the vestibulocollic response be modulated by optic flow?

Presenter: Yawen Yu

Yawen Yu¹, Emily Keshner² ¹Colorado State University, ²Temple University

POSTER SESSION 3: THURSDAY 4TH JULY

A - Activity monitoring

P3-A-1 Associations between laboratory-based assessments and daily physical activity in patients with Parkinson's disease: Can one replace the other?

Presenter: Ira Galperin

Inbar Hillel¹, Ira Galperin¹, Silvia Del Din², Esther Bekkers³, Alice Nieuwboer³, Giovanni Abbruzzese⁴, Laura Avanzino⁵, Freek Nieuwhof⁶, Bastiaan Bloem⁶, Lynn Rochester⁷, Ugo Della Croce⁸, Andrea Cereatti⁸, Nir Giladi¹, Anat Mirelman¹, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²Newcastle University, ³KU Leuven, ⁴University of Genova & IRCCS San Martino Teaching Hospital, ⁵University of Genoa, ⁶Radboud University Medical Center, ⁷Institute of Neuroscience, Newcastle University, ⁸University of Sassari & Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal

P3-A-2 Comparison among PD, MS and healthy people between prescribed gait test and continuous monitoring of gait in a community setting

Presenter: Vrutangkumar Shah

Vrutangkumar Shah¹, James McNames², Patricia Carlson-Kuhta¹, Rebecca Spain¹, John Nutt¹, Mahmoud El Gohary³, Fay Horak¹, Carolin Curtze⁴ ¹Oregon Health & Science University, ²Portland State University, ³APDM, ⁴University of Nebraska Omaha

B - Adaptation, learning, plasticity and compensation

P3-B-3 Examining neural plasticity for slip-perturbation training: An fMRI study

Presenter: Tanvi Bhatt Tanvi Bhatt¹, Patel Prakruti¹, Shamali Dusane¹, Sophie DelDonno¹, Scott Scott Langenecker¹ ¹University of Illinois at Chicago

P3-B-4 Modulation of H-reflex; Effect of age and surface stiffness

Presenter: Leila Alizadehsaravi Leila Alizadehsaravi¹, Sjoerd Bruijn¹, Huub Maas¹, Jaap van Dieën¹ ¹Vrije Universiteit Amsterdam

P3-B-5 After-effect magnitude predicts retention in split-belt gait adaptation

Presenter: Tom Buurke

Tom Buurke¹, Claudine Lamoth¹, Lucas van der Woude¹, Rob den Otter¹

¹University Medical Center Groningen

P3-B-6 Combined study of segmental movements and motion of the centre of mass during adaptation on a split-belt treadmill

Presenter: Luigi Catino

Luigi Catino¹, Chiara Diletta Malloggi², Luigi Tesio² ¹Università degli Studi di Milano, ²IRCCS Santa Lucia Foundation

P3-B-7 Perceptions of induced temporal gait asymmetry in healthy adults

Presenter: Lucas Crosby

Lucas Crosby¹, Jessica Grahn², Joyce Chen¹, Kara Patterson¹

¹University of Toronto, ²Brain & Mind Institute - Western University

P3-B-8 Retention of entrained auditory fractal patterns during gait

Presenter: **Vincenzo Di Bacco Vincenzo Di Bacco¹**, **Jeevaka Kiriella¹**, **Kristen Hollands²**, **William Gage¹** 'York University, ²University of Salford

P3-B-9 A new approach using electrical muscle stimulation to elucidate sensorimotor adaptation in human postural control system

Presenter: Shota Hagio Shota Hagio¹, Anvar Azat¹, Daichi Nozaki¹ ¹University of Tokyo

P3-B-10 Cortical correlates of gait adaptation to walking with a transfemoral dummy prosthesis

Presenter: Vera Kooiman Vera Kooiman¹, Vivian Weerdesteyn¹, Helco van Keeken², Natasha Maurits², Teodoro Solis-Escalante¹ ¹Radboud University Medical Center, ²University of Groningen,

University Medical Center Groningen

P3-B-11 Retention, savings and interlimb transfer of reactive gait adaptations in humans following unexpected perturbations

Presenter: Christopher McCrum

Christopher McCrum¹, Kiros Karamanidis², Paul Willems¹, Wiebren Zijlstra³, Kenneth Meijer¹ ¹Maastricht University, ²London South Bank University, ³German Sport University Cologne

C - Aging

P3-C-13 Effect of postural training in age-related macular degeneration subjects

Presenter: Hortense Chatard

Hortense Chatard¹, Laure Tepenier², Talal Beydoun², Olivier Offret², Sawsen Salah², José-Alain Sahel³, Saddek Mohand-Said³, Maria Pia Bucci⁴

¹INSERM, ²Department of Ophthalmology, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, ³Sorbonne University, Institut de la Vision, Centre Hospitalier National d'Ophtalmologie des Quinze-V, ⁴Hopital Robert Debré

P3-C-14 Normative data of turning parameters in a large cohort of older adults using wearable sensors a four-year longitudinal study

Presenter: Morad Elshehabi Morad Elshehabi¹, Minh Pham¹, Clint Hansen¹, Elke Warmerdam¹, Susanne Nussbaum², Daniela Berg¹, Walter Maetzler¹

¹Christian-Allbrechts-University of Kiel, ²University of Tuebingen

P3-C-15 Regional associations of grey matter volume with gait variability-the Tasmanian Study of Cognition and Gait

Presenter: Oshadi Jayakody

Oshadi Jayakody¹, Monique Breslin¹, Richard Beare², Velandai Srikanth², Helena Blumen³, Michele Callisaya¹ ¹University of Tasmania, ²Peninsula Health, Monash University, ³Albert Einstein College of Medicine

P3-C-16 Healthy older adults regulate lateral stepping in destabilizing environments

Presenter: Meghan Kazanski Jonathan Dingwell¹, Meghan Kazanski¹, Joseph Cusumano¹ ¹Pennsylvania State University

ToC 116

P3-C-17 Do falls or fragility predict fracture in Māori and non-Māori in advanced age; LiLACS NZ

Presenter: Ngaire Kerse Ngaire Kerse¹, Ruth Teh¹, Leah Palaper¹, Oliver Menzies¹, Catherine Bacon¹ ¹University of Auckland

P3-C-18 Adherence to a programme has greater impact on function and behavioural complexity improvement than group allocation in young seniors at risk of functional decline

Presenter: A. Stefanie Mikolaizak

A. Stefanie Mikolaizak¹, Kristin Taraldsen², Elisabeth Boulton³, Beatrix Vereijken², Chris Todd³, Anisoara Paraschiv-Ionescu⁴, Kamiar Aminian⁴, Andrea Maier⁵, Mirjam Pijnappels⁵, Katharina Gordt¹, Jorunn Helbostad², Clemens Becker¹

- que- ¹Robert Bosch Medical Foundation, ²Norwegian University of Science and Technology, ³University of Manchester, ⁴Ecole Polytechnique Fédérale de Lausanne (EPFL), ⁵Vrije Universiteit Amsterdam
 - P3-C-19 Gait speed assessed by a 4-meter walk test is not representative of daily-life gait speed in communitydwelling adults

Presenter: Mirjam Pijnappels Mirjam Pijnappels¹, Jeanine Van Ancum¹, Kimberley van Schooten², Nini Jonkman¹, Bas Huijben³, Rob Van Lummel³, Carel Meskers⁴, Andrea Maier¹

n ¹Vrije Universiteit Amsterdam, ²Neuroscience Research Australia, University of New South Wales, ³McRoberts, ⁴Amsterdam UMC, Vrije Universiteit Amsterdam

P3-C-20 The effect of optic flow stimuli on standing balance in young and older people with low and high fall risk

- 1 Presenter: Daina Sturnieks
- Daina Sturnieks¹, Matthew Brodie¹, Brandon Chen Yi Tan², Michela Persiani³, Stephen Lord¹

¹Neuroscience Research Australia, University of New South Wales, ²University of New South Wales, ³Sede di Fisiologia Università di Bologna

P3-C-21 Associations between mobility and dementia subtypes in nursing home residents

Presenter: Karen Sverdrup

Karen Sverdrup¹, Sverre Bergh², Geir Selbæk¹, Pernille Thingstad³, Gro Tangen¹

¹Norwegian National Advisory Unit on Ageing and Health, ²Innlandet Hospital trust., ³Norwegian University of Science and Technology

P3-C-22 Consistency and test-retest reliability of stepping tests designed to measure self-perceived and actual physical stepping ability in older adults

Presenter: Roel Weijer

Roel Weijer¹, Marco Hoozemans¹, Jaap van Dieën¹, Mirjam Pijnappels¹

¹Vrije Universiteit Amsterdam

D - Biomechanics

P3-D-23 Stiff-knee gait: Effects of knee restriction in the gait of non-impaired individuals

Presenter: Ana Barela

Ana Barela¹, Odair Ramirez¹, Dinah Santana¹, Melissa Celestino¹, Valeriya Gritsenko², Sergiy Yakovenko², José Barela³

¹Cruzeiro do Sul University, ²West Virginia University, ³São Paulo State University (UNESP)

P3-D-24 The effects of varying midsole cushioning in footwear on gait in females with multiple sclerosis

Presenter: Andrew Monaghan

Andrew Monaghan¹, Sutton Richmond¹, Clayton Swanson¹, Daniel Peterson², Brett Fling¹ ¹Colorado State University, ²Arizona State University

P3-D-25 Anticipatory postural adjustment for an accurate step

Presenter: Masahiro Shinya Masahiro Shinya¹, Hiroki Yamada¹ ¹Hiroshima University

P3-D-26 Motion patterns that cause the increase of integrated knee muscle torque in individuals with knee osteoarthritis

Presenter: Moeka Sonoo

Moeka Sonoo¹, Tsutomu Fujino², Keisuke Kubota¹, Shunsuke Kita¹, Hiroki Hanawa¹, Keisuke Hirata¹, Takanori Kokubun¹, Naohiko Kanemura¹

¹Saitama Prefectural University, ²University of Human Arts and Sciences

P3-D-27 The effect of self-paced and fixed speed treadmill walking on the energetic cost of transport

Presenter: Kyra Theunissen

Kyra Theunissen¹, Guy Plasqui¹, Peter Feys², Annelies Boonen¹, Annick Timmermans², Pieter Meyns², Kenneth Meiier³

¹Maastricht University Medical Center, ²Hasselt University, ³*Maastricht University*

P3-D-28 Are a few millimeters added under the big toe enough to improve postural control in elite handball players?

Presenter: Frederic Viseux

Frédéric Viseux¹, Philippe Villeneuve², Rodolfo Parreira³, Franck Barbier¹, Antoine Lemaire⁴, Sebastien Leteneur¹

¹LAMIH - University of Valenciennes - France, ²Posture Lab -Paris, ³LaNEx - University of Southern Santa Catarina - Brazil, ⁴CETD - Centre Hospitalier de Valenciennes – France

E - Brain imaging/activation during posture and gait

P3-E-29 The effect of walking speed on cortical activity in young and older adults

Presenter: Lisa Alcock

Lisa Alcock¹, Rodrigo Vitório², Samuel Stuart³, Lynn Rochester⁴, Annette Pantall¹

¹Newcastle University, ²São Paulo State University (UNESP), ³Oregon Health & Science University, ⁴Institute of Neuroscience, Newcastle University

P3-E-30 Parkinson's disease affects neural activation during continuous alterations to the split-belt treadmill: An [18F] FDG PET Study

Presenter: Dorelle Hinton

Dorelle Hinton¹, Alexander Thiel¹, Laurent Bouyer², Jean-Paul Soucy¹, Caroline Paquette¹ ¹McGill University, ²Université Laval

P3-E-31 Readiness potential of gait initiation recorded with mobile EEG

Presenter: Nadine Jacobsen

Nadine Jacobsen¹, Stefan Debener¹ ¹University of Oldenburg

P3-E-32 Single-session transcranial direct current stimulation alters the cortical response to dual task walking in functionally-limited older adults-a pilot study

Presenter: Azizah Jor'dan

Azizah Jor'dan¹, Hagar Bernard-Elazari², Anat Mirelman², On-Yee Lo³, Jeffrey Hausdorff², Brad Manor³ ¹VA Boston Healthcare System/Harvard Medical School, ²Tel-Aviv Sourasky Medical Center, ³Hebrew SeniorLife

P3-E-33 Activity in the sensorimotor cortex during action observation of walking combined with motor imagery

Presenter: Naotsugu Kaneko

Naotsugu Kaneko¹, Hikaru Yokoyama², Yohei Masugi³, Katsumi Watanabe⁴, Kimitaka Nakazawa¹

¹University of Tokyo, ²Tokyo University of Agriculture and Technology, ³Tokyo International University, ⁴Waseda University

P3-E-34 Functional near infra-red spectroscopy neuroimaging of prefrontal cortex in Parkinson's disease during cognitive tasks under different postures

Presenter: Graham Kerr

Graham Kerr¹, Mark Muthalib², Roger Pegoraro¹, Luisa Roeder¹, Ian Stewart¹, Simon Smith³ ¹Queensland University of Technology, ²University of Montpellier, ³University of Queensland

Adam Dyer¹, Isabelle Killane², Benjamin Campbell², P3-E-35 Brain activation during real-time walking post-Killian Tobin², Richard Reilly¹, Isabella Batten¹, Nollaig stroke: Systematic review Bourke¹, James Gibney¹, Sean Kennelly¹ ¹Trinity College Dublin, ²Dublin Institute of Technology

Presenter: Shannon Lim

Shannon Lim¹, Dennis Riley Louie¹, Janice Eng¹ ¹University of British Columbia

- ToC

118

P3-E-36 Resting state functional connectivity of normal and dual-task walking in healthy older adults

Presenter: On-Yee Lo

On-Yee Amy Lo¹, Mark Halko², Victoria Poole¹, Junhong Zhou³, Lewis Lipsitz¹, Brad Manor³

¹Hebrew SeniorLife / Harvard Medical School, ²Beth Israel Deaconess Medical Center / Harvard Medical School, ³Harvard Medical School

P3-E-37 Prefrontal and motor cortical activity during stepping tasks in older people at low and high risk of falling

Presenter: Paulo Pelicioni

Paulo Pelicioni¹, Stephen Lord¹, Nigel Seng¹, Bethany Halmy¹, Daina Sturnieks¹, Rui Liu¹, Jasmine Menant¹

¹Neuroscience Research Australia, University of New South Wales

P3-E-38 The neural correlates of discrete gait characteristics in ageing: A structured review

Presenter: Joanna Wilson

Joanna Wilson¹, Liesl Allcock², Riona Mc Ardle¹, John-Paul Taylor¹, Lynn Rochester³

¹Newcastle University, ²Hexham General Hospital, ³Institute of Neuroscience, Newcastle University

P3-E-39 Cortical muscle synergy representations reveal functional modulation as a function of short-term balance training

Presenter: Coen Zandvoort

Coen Zandvoort¹, Jaap van Dieën¹, Nadia Dominici¹, Andreas Daffertshofer¹ ¹Vrije Universiteit Amsterdam

F - Cognitive impairments

P3-F-40 Gait as a potential marker of cognitive decrements in Type 2 Diabetes (T2DM): Early results from the ENBIND study

Presenter: Adam Dyer

P3-F-41 Gait as a signature of cognitive impairment and dementia disease subtype

Presenter: Riona Mc Ardle

Riona Mc Ardle¹, Brook Galna¹, Alan Thomas¹, Lynn Rochester²

¹Newcastle University, ²Institute of Neuroscience, Newcastle University

P3-F-42 Association of gait domains and incident falls in mild cognitive impairment: Results from the gait and brain study

Presenter: Frederico Pieruccini-Faria Frederico Pieruccini-Faria¹, Yanina Sarquis-Adamson¹, Manuel Montero-Odasso¹ ¹University of Western Ontario

P3-F-43 Older people with dementia have reduced daily-life activity and impaired daily-life gait when compared to age-sex matched controls

Presenter: Morag Taylor

Morag Taylor¹, Matthew Brodie¹, Kimberley van Schooten¹, Kim Delbaere¹, Jacqeline Close¹, Narelle Payne¹, Lyndell Webster¹, Jessica Chow¹, Garth McInerney¹, Susan Kurrle², Stephen Lord¹

¹Neuroscience Research Australia, University of New South Wales, ²University of Sydney

G - Cognitive, attentional, and emotional influences

P3-G-44 The effects of virtual reality-induced postural threat on performance of a walking balance task

Presenter: Amir Boroomand-Tehrani Amir Boroomand-Tehrani¹, Andrew Huntley², David Jagroop², Jennifer Campos², Kara Patterson¹, Luc Tremblay¹, Avril Mansfield² ¹University of Toronto, ²Toronto Rehabilitation Institute

P3-G-45 Move aside: Approach-avoidance theories scrutinized

Presenter: Daniëlle Bouman Daniëlle Bouman¹, John Stins¹, Peter Beek¹ ¹Vrije Universiteit Amsterdam

P3-G-46 Priming distorts sense of instability during postural control

Presenter: Adolfo Bronstein

Adolfo Bronstein¹, Patricia Castro¹, Sami Mahmoud², Efstratia Papoutselou¹, Constanza Fuentealba³, Qadeer Arshad¹

¹Imperial College London, ²Technische Universität München, ³Universidad San Sebastian

P3-G-47 Patterns of dual-task interference at hospital discharge post stroke

Presenter: Jody Feld Jody Feld¹, Prudence Plummer¹ ¹University of North Carolina at Chapel Hill

P3-G-48 The effect of age and anxiety on objective and subjective instability

Presenter: Richard Ibitoye

Patricia Castro¹, Diego Kaski², Richard Ibitoye¹, Marco Schieppati³, Michael Furman¹, Qadeer Arshad¹, Adolfo Bronstein¹

¹Imperial College London, ²University College London, ³Lunex University

P3-G-49 The nature of motor-cognitive relationship beyond age and disease

Presenter: Inbal Maidan

Inbal Maidan¹, Preeti Sunderaraman², Eran Gazit¹, Anat Mirelman¹, Yaakov Stern², Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²Columbia University Medical Center

P3-G-50 Fear of heights saturates 20 to 40 meters above ground

Presenter: Max Wühr

Max Wühr¹, Katharina Breitkopf¹, Julian Decker¹, Gerado Ibarra¹, Doreen Huppert¹, Thomas Brandt¹ ¹Ludwig-Maximillians Universität München

P3-G-51 The influence of virtual height on visually evoked balance responses

Presenter: Emma Nielsen

Emma Nielsen¹, Taylor Cleworth², Mark Carpenter¹ ¹University of British Columbia, ²University of Waterloo

H - Coordination of posture and gait

P3-H-52 Tumors of cerebellum effect on saccadic system and gait

Presenter: Alina Aizenshtein

Alina Aizenshtein¹, Marina Shurupova¹, Vladimir Kasatkin¹, Dmitriy Skvortsov², Alexander Karelin¹ ¹Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, ²Federal Research and Clinical Centre of Russia's Federal Medical-Biological Agency (FNKC FMBA)

P3-H-53 Daily variation in executive function predicts daily variation in dual task walking performance in olde adults

Presenter: Sarah Allen Sarah Allen¹, Junhong Zhou¹, Alexa Ludington¹, Bonn Wong¹, Brad Manor¹ ¹Harvard Medical School

P3-H-54 Effects of discrete visual cues on anticipatory eye movement and segment rotation during walking turns in neurotypical young adults and persons with Parkinson's disease

Presenter: Tyler Baker

Tyler Baker¹, Jenna Pitman², Adam Johnston¹, Andrew Godbout¹, Rebecca Reed-Jones¹ ¹University of Prince Edward Island, ²University of Guelph

P3-H-55 Modification of gait intralimb coordination: Objective comparison of hip-knee cyclograms of individuals with incomplete spinal cord injury vs healthy subjects

Presenter: Maude Barreau

Maude Barreau¹, Manuel Jose Escalona Castillo¹, Alexandre Tapin¹, Martin Vermette², Dany H. Gagnon¹, Cyril Duclos¹ ¹Université de Montréal, ²IRGLM

P3-H-56 Walking speed choices among married couple Middle-aged and older adults walk slower when walking with their partner

Presenter: HyeYoung Cho

HyeYoung Cho¹, Anna Forster¹, Samuel Hatala¹, Manue Ochoa¹, Sharon Christ¹, Melissa Franks¹, Elizabeth Richards¹, Shirley Rietdyk¹ ¹Purdue University

ToC 120

	P3-H-57 Variability of the inter-joint coordination during grade walking
т	Presenter: Arthur Dewolf
	Arthur Dewolf ¹ , Patrick Willems ¹
	¹ Universite catholique de Louvain
	P3-H-58 Effect of voluntary gaze movement on gait steering control
	Presenter: Felix Dollack
	Felix Dollack ¹ , Monica Perusquia-Hernandez ¹ , Hideki
	Kadone ¹ , Kenji Suzuki ¹
	¹ University of Tsukuba
er	P3-H-59 How much does pregnancy affect female's gait pattern?
	Presenter: Wanda Forczek
ie	Wanda Forczek ¹ , Yury Ivanenko ² , Marcin Salamaga ³ ,
	Agata Maslon ¹ , Marta Curylo ¹ , Barbara Fraczek ¹ ,
	Agnieszka Suder ¹
	¹ University of Physical Education, ² IRCCS Santa Lucia
	Foundation, ³ Cracow University of Economics
	P3-H-60 Looking downward while walking is more challenging than looking forward for ambulatory chronic stroke patients
/	Presenter: Yu-Chu Hsueh
	Yu-Chu Hsueh ¹ , Pei-Yun Lee ² , Pei-Yun Lee ² , Chih-Hung
	Chen ¹ , Hui-Yu Tseng ³ , Sang-I Lin ¹
	¹ National Cheng Kung University, ² National Taiwan University
	Hospital Bei-Hu Branch, ³ Tainan Hospital, Ministry of Health
у	and Welfare
	P3-H-61 Postural sway in young adults with and without chronic low back pain
	Presenter: Karen Lomond
,	Karen Lomond ¹ , Nick Paselk ² , Nilanthy Balendra ² ,
	Burkhardt Zachery ² , Phillion Brooke ² , Jennifer Sansom ²
	¹ Ithaca College, ² Central Michigan University
es:	P3-H-62 Effect of arm motion on postural strategies
g	during uphill and downhill walking
	Presenter: Mary Elise MacDonald
	Mary Elise MacDonald ¹ , Allen Hill ¹ , Julie Nantel ¹
el	
	¹ University of Ottawa

P3-H-63 The path curvature of the body centre of mass during walking as an index of balance control in patients with Multiple Sclerosis

Presenter: Chiara Diletta Malloggi

Chiara Diletta Malloggi¹, **Luigi Catino²**, **Viviana Rota¹**, **Laura Perucca¹**, **Stefano Scarano¹**, **Luigi Tesio¹** ¹IRCCS Santa Lucia Foundation, ²Università degli Studi di Milano

P3-H-64 Older adults adopted a more conservative strategy to step into a hole when compared to the task of stepping down a curb

Presenter: Renato Moraes

Renato Moraes¹, Luciana Santos¹, Rosangela Batistela¹ ¹University of São Paulo

P3-H-65 Differences in pre-season postural control based on sport type

Presenter: John Palazzolo John Palazzolo¹, Daniel Goble², Jeff Labban¹, Scott

Ross¹, Donna Duffy¹, Christopher Rhea¹ ¹University of North Carolina, Greensboro, ²Oakland University

P3-H-66 Walking with large axial pelvis rotations causes changes in axial thorax-pelvis coordination as observed in low back pain

Presenter: Maarten Prins

Maarten Prins¹, Luca Cornelisse², Onno Meijer², Peter van der Wurff¹, Sjoerd Bruijn², Jaap van Dieën² ¹Military Rehabilitation Centre 'Aardenburg', ²Vrije Universiteit Amsterdam

P3-H-67 Negative effects of cognitive interference and altered sensory input on balance in Huntington's disease

Presenter: Nicollette Purcell

Nicollette Purcell¹, Jennifer Goldman¹, Bichun Ouyang¹, Bryan Bernard¹, Joan O'Keefe¹ ¹Rush University Medical Center

P3-H-69 Analysis of center of mass velocity during dualtask in fallers and non-fallers elderly: Gait combined with prehension task during avoidance of an obstacle

Presenter: Natalia Rinaldi

Natalia Rinaldi¹, Janine Carvalho Camargos¹, Leticia Avellar¹, Anselmo Frizera¹ ¹Federal University of Espirito Santo P3-H-70 Motor flexibility during locomotion: An important component of functional mobility in older adults

Presenter: Noah Rosenblatt

Noah Rosenblatt¹, Christopher Hurt², Nils Eckardt³ ¹Rosalind Franklin University of Medicine and Science, ²University of Alabama, Birmingham, ³University of Oldenburg

P3-H-71 Landing under conditions of height-induced threat

Presenter: **Bénédicte Schepens**

Bénédicte Schepens¹, M J Luu², Mark Carpenter²

¹Universite catholique de Louvain, ²University of British Columbia

P3-H-72 The modulation of trunk coordination for various step widths

Presenter: Hai-Jung (Steffi) Shih Hai-Jung (Steffi) Shih¹, Kornelia Kulig¹ ¹University of Southern California

P3-H-73 Can a fractal visual motion cue modulate postural sway complexity?

Presenter: Haralampos Sotirakis

Harris Sotirakis¹, Nicholas Stergiou², Dimitrios Patikas¹, Vassilia Hatzitaki¹

¹Aristotle University of Thessaloniki, ²University of Nebraska at Omaha

P3-H-74 Muscle activity in the affected leg of stroke patients can be manipulated by altering guidance offered to the unaffected leg during Lokomat walking

Presenter: Sylvana Weiland

Sylvana Weiland¹, Heleen Reinders-Messelink², Annemarijke Boonstra², Lucas van der Woude¹, Rob den Otter¹

¹University Medical Center Groningen, ²Rehabilitation center 'Revalidatie Friesland'

I - Development of posture and gait

P3-I-75 The motor control of running in children and their development

Presenter: Margit Bach

Margit Bach¹, Andreas Daffertshofer¹, Nadia Dominici¹ ¹Vrije Universiteit Amsterdam P3-I-76 Spatiotemporal gait characteristics in adolescent idiopathic toe walkers

Presenter: Richard Beuttler

Rahul Soangra¹, Richard Beuttler¹, Caprice Hollandsworth¹, Shewta Chheda¹, Afshin Aminian², Marybeth Grant-Beuttler¹ ¹Chapman University, ²Children's Hospital of Orange County

P3-I-78Balance and postural control in healthy children
under 12 years of age: A systematic reviewP3-J-83Concurrent validity of the Clinical Test of
Sensory Interaction of Balance (CTSIB) Kids-BESTest
criteria with laboratory center of pressure measures in
children with and without cerebral palsyPresenter: Prasath JayakaranProceth Jayakaran

Presenter: Prasath Jayakaran Prasath Jayakaran¹, Katie Bromley¹, Hayley Foster¹, Nikko Kim¹, Karaitiana Smith¹ ¹University of Otago

P3-I-79 Modular control of the leading and trailing limbs during obstacle clearance in children: Preliminary results

Presenter: Michael MacLellan

Michael MacLellan¹ ¹University of Prince Edward Island

P3-I-80 Development of postural control during single-leg standing in children aged 3-10 years

Presenter: Hiroki Mani

Hiroki Mani¹, Saori Miyagishima², Naoki Kozuka², Kenji Taneda¹, Takahiro Inoue¹, Kenta Takeda¹, Tadayoshi Asaka¹

¹Hokkaido University, ²Sapporo Medical University

J - Developmental disorders

P3-J-81 Feedforward motor control in developmental dyslexia and developmental coordination disorder: Does comorbidity matter?

Presenter: Christine Assaiante

Christine Assaiante¹, Fabien Cignetti², Marianne Vaugoyeau¹, Aurelie Fontan¹, Marianne Jover³, Brigitte Chabrol³ ¹CNRS, ²CNRS, TIMC-IMAG UMR 5525, ³AMU

ToC 122

P3-J-82 Use of cluster analysis for gait classification of patients with syndrome of Dravet

Presenter: Ann Hallemans

Ann Hallemans¹, Lore Wyers¹, Karen Verheyen¹, An-Sofie Schoonjans¹, Berten Ceulemans², Patrica Van de Walle¹

¹University of Antwerp, ²Antwerp University Hospital

Presenter: Leanne M Johnston

Leanne Johnston¹, Rosalee Dewar¹, Kylie Tucker¹, Andrew Claus¹, Rob Ware² ¹University of Queensland, ²Griffith University

P3-J-84 Postural control in young adults with high-functioning Autism Spectrum Disorder (ASD): Distinguishing between general and sensory channelspecific impairments

Presenter: **Rebekah Knox Rebekah Knox¹, Mihalis Doumas¹** ¹Queen's University Belfast

K - Devices to improve posture and gait

P3-K-85 A development of a bicycle-simulator-balance trainer with a novel system that provide customized unexpected perturbations during bicycling (the PerStBiRo system)

Presenter: Shani Batcir

Shani Batcir¹, Yaakov Livne¹, Rotem Lev Lehman¹, Guy Shani¹, Amir Shapiro¹, Itshak Melzer¹ ¹Ben-Gurion University

P3-K-86 Immediate effect of a rehabilitation dog on weight-bearing and balance during early prosthetic training in individuals with vascular lower-limb amputation

Presenter: Cyril Duclos

Cyril Duclos¹, Brendon Pham², Valérie Martin-Lemoyne³, Dany Gagnon²

¹Université de Montréal, ²Université de Montréal, School of rehabilitation, ³Centre for Interdisciplinary Research in Rehabilitation (CRIR-IRGLM)

P3-K-87 Effect of multi-tasking on gait and cognitive demands in adults with Alzheimer's dementia experienced in using a 4-wheeled walker

Presenter: Susan Hunter

Susan Hunter¹, Alison Divine², Humberto Omana¹, Walter Wittich³, Andrew Johnson¹, Keith Hill⁴

¹University of Western Ontario, ²University of Leeds, ³University of Montreal, ⁴Curtin University

P3-K-88 Evaluation of corrective moment of measurement orthosis using CB brace for knee osteoarthritis

Presenter: Yasuhiro Mine

Yasuhiro Mine¹, Tamotsu Sakima² ¹Toyo University, ²SAKIMA Prosthetics & Orthotics Co.,Ltd.

P3-K-89 Development of an active mechanical harness system

Presenter: Ann Reinthal M Ann Reinthal¹, Debbie Espy¹, Lorenzo Bianco¹, Poya Khalaf¹, John DeMarco¹ ¹Cleveland State University

P3-K-90 Plantar foot mechanoreceptor topography and lower limb muscle activity

Presenter: Kelly Robb Kelly Robb¹, Stephen Perry¹ ¹Wilfrid Laurier University

P3-K-91 Spinal cord stimulation improves gait and modulates cortical activity in parkinsonian patients unresponsive to dopaminergic medication

Presenter: Olivia Samotus

Olivia Samotus¹, Maria Alamos², Andrew Parrent¹, Mandar Jog¹

¹London Health Sciences Centre, ²Pontificia Universidad Catolica de Chile

P3-K-92 How to encourage others: A perceptionempathy biofeedback system for preventing falls in older adults

Presenter: Kazuhiro Yasuda

Kazuhiro Yasuda¹, Yuki Hayashi¹, Hiroyasu Iwata¹ ¹Waseda University

L - Effect of medication on posture and gait

P3-L-93 Gait speed does not mediate the association between antidepressants and falls

Presenter: **Orna Donoghue**

Orna Donoghue¹, Robert Briggs¹, Frank Moriarty², Rose Kenny¹

¹Trinity College Dublin, ²Royal College of Surgeons in Ireland

M - Exercise and physical activity

P3-M-95 Perturbation treadmill training: Sustainable effects on clinical gait and postural stability symptoms as well as gait variability in Parkinson's disease

Presenter: Heiko Gaßner

Heiko Gaßner¹, Simon Steib², Sarah Klamroth², Cristian Pasluosta², Werner Adler², Bjoern Eskofier², Klaus Pfeifer², Jürgen Winkler², Jochen Klucken² ¹University Hospital Erlangen, ²Friedrich-Alexander University (FAU) Erlangen-Nürnberg

P3-M-96 Clinical outcome measures and the patient experience: What we can learn from conducting a process evaluation of a balance training intervention

Presenter: Breiffni Leavy

Breiffni Leavy¹, Conran Joseph¹, Hanna Johansson¹, Erika Franzén¹ ¹Karolinska Institutet

P3-M-97 Effect of community-based brisk walking on enhancing motor and non-motor symptoms in people with Parkinson's disease

Presenter: Margaret Mak

Margaret Mak¹, Irene Wong¹ ¹The Hong Kong Polytechnic University

P3-M-98 Effects of strength training the hip abductoradductor muscles on protective stepping: A pilot study

Presenter: Marie-Laure Mille

Marie-Laure Mille¹, Maria Papaiordanidou², Guillaume Florent³, Karim El Koulali³, Jean-Louis Vercher³, Richard Fitzpatrick⁴

¹Aix Marseille Université, ²URF STAPS, Univ. de Bourgogne, ³CNRS & Aix-Marseille Univ, ⁴University of New South Wales P3-M-99 Effect of muscle fatigue on postural stability and muscular activation of the supporting leg in soccer players' kicking

Presenter: Julia Oliveira

Julia Oliveira¹, Caroline Souza¹, Daniel Coelho¹, Luis Teixeira¹ ¹University of São Paulo

N - Falls and fall prevention

P3-N-100 Increased resilience of judoists to unpredictable large-magnitude perturbations to body balance

Presenter: Marina Betelli

Marina Betelli¹, Julia Oliveira¹, Patricia Takazono¹, Caroline Souza¹, Daniel Coelho¹, Luis Teixeira¹ ¹University of São Paulo

P3-N-101 The effect of hearing loss on balance control - Do hearing aids help?

Presenter: Nicoleta Bugnariu

Nicoleta Bugnariu¹, Victoria Kowalewski¹, Rita Patterson¹, Linda Thibodeau²

¹University of North Texas Health Science Center, ²University of Texas at Dallas

P3-N-102 Synergistic ground reaction forces during double support while negotiating a curb

Presenter: Chuyi Cui

Chuyi Cui¹, HyeYoung Cho¹, Ashwini Kulkarni¹, Shirley Rietdyk¹, Fabio Barbieri², Satyajit Ambike¹ ¹*Purdue University, ²São Paulo State University (UNESP)*

P3-N-103 The effect of handrail cross-sectional design on centre of mass control during compensatory reach-tograsp reactions to recover balance

Presenter: **Philippa Gosine Philippa Gosine¹, Vicki Komisar², Alison Novak¹** ¹Toronto Rehabilitation Institute, ²Simon Fraser University

P3-N-104 Falls and hip fractures: A biomechanically based model of sex and age specific risk assessment

Presenter: Andrew Hudson

Andrew Hudson¹, Brian Street² ¹University of California, Bakersfield, ²California State University, Bakersfield

< ToC 🛛 🖊 🖊 🖊 🖊 🖊 🗧

P3-N-105 Effects of thin plantar stimulation on postural coordination patterns

Presenter: Marc Janin

Marc Janin¹, Emmanuelle Pivron Braquet², Frédéric Noé³

¹Université de Pau et des pays L'adour, ²PODOLOGUE, ³Laboratoire Mouvement, Equilibre, Performance, Santé (EA 4445)

P3-N-106 Sex differences in predictors of subsequent falls in senior fallers: A prospective study of the Vancouver Falls Prevention Cohort

Presenter: Deborah Jehu

Deborah Jehu¹, Jennifer Davis¹, Kristin Vesley¹, Winnie Cheung¹, Anna Egbert¹, Liu-Ambrose Teresa¹ ¹University of British Columbia

P3-N-107 The frequency and circumstances of falls reported by unilateral lower limb prosthesis users

Presenter: Janis Kim

Janis Kim¹, Matthew Major², Brian Hafner³, Andrew Sawers¹

¹University of Illinois at Chicago, ²Northwestern University, ³University of Washington

P3-N-108 Effect of holding and grasping objects on risk for head impact during falls in older adults

Presenter: Vicki Komisar

Vicki Komisar¹, Nataliya Shishov¹, Stephen Robinovitch¹ ¹Simon Fraser University

P3-N-109 Different types of tripping over an unexpected obstacle while walking on level ground - age and contributing factors

Presenter: Ilan Kurz

llan Kurz¹, Shlomit Eyal², Inbal Maiden², Anat Mirelman³, Nir Giladi³, Jeff Hausdorff³

¹Ben-Gurion University, ²Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky, ³Tel-Aviv Sourasky Medical Center

P3-N-110 Balance control in young healthy adults: Is relative performance across tasks indicative of a balance control characteristic?

y, Presenter: Gary Mangan Gary Mangan¹, William Mcllroy¹ ¹University of Waterloo

P3-N-111 Anticipatory and reactionary postural movements during handrail grasping while forward walking in young and older adults

Presenter: Emily McIntosh Emily McIntosh¹, Lori Ann Vallis¹ ¹University of Guelph

P3-N-112 Compensatory rapid leg movements during unexpected loss of balance while walking- differences between fallers and non fallers

Presenter: Hadas Nachmani Hadas Nachmani¹, Shani Batcir¹, Itzhak Melzer¹ ¹Faculty of Health Sciences at Ben-Gurion University of the Negev

P3-N-113 Fear of falling following a 12-week attentionally focused balance training intervention: Preliminary data

Presenter: Louisa Raisbeck

Louisa Raisbeck¹, Lauren Higgins¹, Ruth Stout¹, Danielle Felsberg¹, Sean Cochran¹, John Palazzolo¹, Jeff Labban¹, Christopher K¹

¹University of North Carolina, Greensboro

P3-N-114 Assessing recovery time from unexpected loss of balance during walking in young and older adults

Presenter: Uri Rosenblum Belzer

Uri Rosenblum Belzer¹, Itzik Melzer², Shani Kimel-Naor¹, Lotem Kribus-Shmiel¹, Yotam Bahat¹, Gabi Zeilig¹, Meir Plotnik¹

¹Sheba Medical Center, ²Ben-Gurion University

P3-N-115 Re-enactment - a method to reproduce realworld fall events

Presenter: Kim Sczuka Kim Sczuka¹, Lars Schwickert¹, Clemens Becker¹, Jochen Klenk¹

¹Robert-Bosch-Krankenhaus

P3-N-116 Designing optimal visual cues to increase stair climbing safety in young and older adults

Presenter: Timmion Skervin

Timmion Skervin¹, Mark Hollands¹, Constantinos Maganaris¹, Andrew Schofield², Neil Thomas¹, Richard Foster¹

¹Liverpool John Moores University, ²Aston University

P3-N-117 Postural sway of the fallers based on retrospective and prospective studies with CTSIB

Presenter: Gyerae Tack

Taeho Kim¹, Jinsoo Lee¹, Junggil Kim¹, Jeongwoo Seo¹, Jinseong Choi¹, Gyerae Tack¹ ¹Konkuk University

P3-N-118 A biomechanics-based investigation of walking aid use in gait laboratory and home settings

Presenter: Sibylle Thies

Sibylle Thies¹, Alex Bates¹, Eleonora Costamagna¹, Laurence Kenney¹, Malcolm Granat¹, Jo Webb¹, Helen Dawes² ¹University of Salford, ²Oxford Brookes University

O - Habilitation & rehabilitation

P3-O-119 Effects of dance on motor and non-motor symptoms of Parkinson's disease: A feasibility study

Presenter: Anna Carapellotti Anna Carapellotti¹, Michail Doumas¹ ¹Queen's University Belfast

P3-O-120 Enhanced postural control in experienced karate practitioners: Further evidence that practice does make perfect

Presenter: Jeffrey Hausdorff

Amit Hadad¹, Natalie Ganz², Eran Gazit², Nathan Intrator¹, Jeff Hausdorff² ¹Tel Aviv University, ²Tel-Aviv Sourasky Medical Center

P3-O-121 Characteristics of people with stroke who withdraw from mobility and balance rehabilitation research studies

Presenter: Kara Patterson

Kara Patterson¹, Jennifer Wong², Avril Mansfield² ¹University of Toronto, ²Toronto Rehabilitation Institute

P - Modeling

P3-P-122 Collision avoidance between a walker and a person on an electric powered wheelchair

Presenter: Anne-Hélène Olivier Anne-Hélène Olivier¹, Nicolas Le Borgne², Marie Babel², Armel Crétual¹, Julien Pettré² ¹University of Rennes / Inria, ²Inria Rennes P3-P-123 Accounting for sensory noise is important to simulate stable and human-like control of perturbed standing balance

Presenter: Tom Van Wouwe

Tom Van Wouwe¹, Friedl De Groote¹, Lena Ting² ¹KU Leuven, ²Emory University and Georgia Tech

Q - Neurological diseases

P3-Q-124 The effect of dopaminergic medication on planned gait termination in Parkinson's disease

Presenter: Ali Aljaroudi

Ali Aljaroudi¹, Nicolaas Bohnen¹, Martijn Müller¹ ¹University of Michigan

P3-Q-125 Protective postural control with divided attention: Effects of Parkinson's disease

Presenter: Jordan Barajas

Daniel Peterson¹, Jordan Barajas¹, Anandita Nadkarni², Linda Denney³, Shyamal Mehta⁴ ¹Arizona State University, ²Carnegie Mellon University,

³Northern Arizona University, ⁴Mayo Clinic

P3-Q-126 Initial center of pressure position prior anticipatory postural adjustments during gait initiation in people with Parkinson's disease with freezing of gait

Presenter: Madli Bayot

Madli Bayot¹, Delval Arnaud¹, Hansen Clint², Walter Maetzler², Christian Schlenstedt²

¹University of Lille - Inserm U1171-Degenerative and Vascular Cognitive Disorders, ²Christian-Allbrechts-University of Kiel

P3-Q-127 The effect of a high intensity treadmill training and self-management program on physical activity in stroke patients undergoing rehabilitation: A RCT

Presenter: Sandra Brauer

Sandra Brauer¹, Suzanne Kuys², Jenny Paratz³, Louise Ada⁴

¹University of Queensland, ²Australian Catholic University, ³Griffith University, ⁴University of Sydney

ToC 126

P3-Q-128 Unpredictable gait perturbation training improves reactive responses, and gait stability functions contrary to gait training without perturbations in stroke individuals

Presenter: Vahid EsmaeiliMahani Vahid EsmaeiliMahani¹, Laurent Bouyer², Cyril Duclos¹ ¹Université de Montréal, ²Université Laval

P3-Q-129 Feature selection of objective metrics of balance dysfunction in Parkinson's disease

Presenter: Naoya Hasegawa

Naoya Hasegawa¹, Vrutangkumar Shah¹, Anjanibhargavi Ragothaman¹, Samuel Stuart¹, Patricia Carlson-Kuhta¹, John Nutt¹, Fay Horak¹, Tadayoshi Asaka², Martina Mancini¹ ¹Oregon Health & Science University, ²Hokkaido University

P3-Q-130 Influence of reactive balance training on responses to an unexpected slip in individuals with chronic stroke: A randomized controlled trial

Presenter: Andrew Huntley

Andrew Huntley¹, Alison Schinkel-Ivy², Anthony Aqui¹, Avril Mansfield¹

¹Toronto Rehabilitation Institute, ²Nipissing University

P3-Q-131 Motor training improves motor performance at the preclinical stage of degenerative cerebellar ataxia

Presenter: Winfried Ilg

Winfried Ilg¹, Matthis Synofzik¹ ¹Hertie Institute for Clinical Brain Research

P3-Q-132 Influence of environmental context on locomotor skill learning in virtual reality in people with Parkinson's disease

Presenter: **Aram Kim Aram Kim¹, James Finley¹** ¹University of Southern California

P3-Q-133 Executive functioning, muscle power and reactive balance are major contributors of gait adaptability in people with Parkinson's disease

Presenter: Stephen Lord

Maria Joana Duarte Caetano¹, Stephen Lord², Natalie Allen³, Jooeun Song³, Serene Paul³, Colleen Canning³, Jasmine Menant²

¹Prefeitura Municipal de São Carlos, ²Neuroscience Research Australia, University of New South Wales, ³University of Sydney

P3-Q-134 Diurnal systematic variance of gait during normal daily monitoring

Presenter: James McNames

James McNames¹, Vrutangkumar Shah², Patty Carlson-Kuhta², Mahmoud El-Gohary³, John Nutt², Rebecca Spain², Fay Horak², Carolin Curtze⁴

¹Portland State University, ²Oregon Health & Science University, ³APDM, ⁴University of Nebraska Omaha

P3-Q-135 Objective quantifiable assessment of nocturnal movements in patients with Parkinson's disease using a wearable sensor

Presenter: Anat Mirelman

Anat Mirelman¹, Inbar Hillel¹, Lynn Rochester², Bastiaan Bloem³, Laura Avanzino⁴, Alice Nieuwboer⁵. Inbal Maidan¹, Shirley Shiratzki¹, Talia Herman¹, Jesse Cederbaum⁶, Nir Giladi¹, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²Institute of Neuroscience, Newcastle University, ³Radboud University Medical Center, ⁴University of Genoa, ⁵KU Leuven, ⁶Biogen Biotechnologies, *Cambridge Massachusets*

P3-Q-136 Evaluation of gait parameter thresholds to distinguish idiopathic Parkinson's disease from atypical parkinsonism using instrumented gait analysis

Presenter: Ken Möhwald

Ken Möhwald¹, Julian Decker², Max Wuehr², Roman Schniepp²

¹University Hospital, LMU Munich, ²Ludwig-Maximillians Universität München

P3-Q-137 Persons with MS exhibit declines in upper body control during walking

Presenter: Steven Morrison

Steven Morrison¹, Cortney Armitano¹, Corey Rynders², Jake Sosnoff³

¹Old Dominion University, ²University of Colorado, ³University of Illinois at Chicago

P3-Q-138 Effect of different exercise regimens on walking performance in people with multiple sclerosis

Presenter: Klara Novotna

Klara Novotna¹, Lucie Sucha¹, Petr Reznicek¹, Lukas Sobisek², Eva Kubala Havrdova¹

¹Charles University, ²Czech Economical University, Faculty of Probability

P3-Q-139 Fast paced gait may be more discriminating than dual tasking for detecting severity of gait and turn deficits in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS)

Presenter: Joan O'Keefe

Joan O'Keefe¹, Danielle Carns¹, Joseph Guan¹, Erin Robertson¹, Timothy Tung¹, Nicollette Purcell¹, Elizabeth Berry-Kravis¹, Deborah Hall¹ ¹Rush University Medical Center

P3-Q-140 Leukoaraiosis, an invisible factor contributes to balance and gait disorders after stroke

Presenter: **Dominic Pérennou**

Dominic Pérennou¹, Shenhao Dai², Céline Piscicelli¹, Emmanuelle Clarac², Patrice Davoine², Anne Chrispin², Andréa Kistner², Marie Jaeger², Olivier Detante², Monica Baciu², Marc Hommel²

¹University Hospital Grenoble-Alpes, ²Grenoble Alpes University Hospital

P3-Q-141 Balance control impairments in Fabry disease

Presenter: Philippe Perrin

Philippe Perrin¹, Laetitia Peultier-Celli², François Feillet², Roland Jaussaud²

¹University of Lorraine and University Hospital Nancy, ²Université de Lorraine et CHRU de Nancy

P3-Q-142 Development of an automated, instrumented composite index to quantify the performance of a 'freezing provoking test' in patients with Parkinson's disease

Presenter: Tal Reches

Tal Reches¹, Eran Gazit¹, Moria Dagan², Talia Herman¹, Pablo Cornejo Thumm¹, Nir Giladi¹, Manor Brad³, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²Tel Aviv University, ³Hebrew SeniorLife / Harvard Medical School

P3-Q-143 The impact of split-belt treadmill walking on freezing related gait features in Parkinson's disease

Presenter: Christian Schlenstedt

Christian Schlenstedt¹, Jana Seuthe¹, Pieter Ginis², Markus Hobert¹, Nicholas D'Cruz², Alice Nieuwboer² ¹Christian-Allbrechts-University of Kiel, ²KU Leuven

P3-Q-144 Global lower limb coactivation during gait in P3-O-149 The effects of Parkinson's disease and patients with cerebellar ataxia essential tremor on the multiscale dynamics of hand tremor motion

Presenter: Mariano Serrao

Mariano Serrao¹, Lorenzo Flori², Tiwana Varrecchia³, Carmela Conte⁴, Antonella Tatarelli², Carlo Casali¹, Francesco Pierelli¹, Francesco Draicchio², Alberto Ranavolo²

¹Sapienza University of Rome, ²INAIL, ³University Roma Tre, ⁴Fondazione Don Gnocchi, Milan

P3-Q-145 Clinical correlates of fatigue in patients with multiple sclerosis: Is mental fatigue more important than aait speed?

Presenter: Shirley Shema Shiratzky

Shirley Shema Shiratzky¹, Ruopeng Sun², Keren Regev¹, Arnon Karni¹, Jacob Sosnoff², Jeff Hausdorff¹, Anat Mirelman¹

¹Tel-Aviv Sourasky Medical Center, ²University of Illinois at Urbana-Champaign

P3-Q-146 Does transcranial direct current stimulation improve reaction times of people after stroke during balance perturbations, gait initiation, or voluntary movement?

Presenter: Wouter Staring

Wouter Staring¹, Milou Coppens¹, Alexander Geurts¹, Vivian Weerdesteyn¹

¹Donders Institute, Radboud University Medical Centre

P3-Q-147 Protective stepping in multiple sclerosis: A pilot study

Presenter: Charles Van Liew

Charles Van Liew¹, Leland Dibble¹, Grace Hunt², K. Foreman², Daniel Peterson¹ ¹Arizona State University, ²University of Utah

P3-Q-148 Walking speed improves with arm swing manipulation in people with Parkinson's disease

Presenter: Vinicius Zampier

Vinicius Zampier¹, Rodrigo Vitório¹, Victor Beretta¹, Diego Jaimes¹, Diego Orcioli-Silva¹, Lilian Gobbi¹ ¹São Paulo State University (UNESP)

Presenter: Junhong Zhou

Junhong Zhou¹, Dongning Su², Shuo Yang², Ying Wang², Zhu Liu², Hua Pan², Tao Feng²

¹Harvard Medical School, ²Beijing Tiantan Hosptital, Capital Medical University

R - Orthopedic diseases and injuries

P3-R-150 Effects of repetitive head impacts on tandem gait performance over an ice hockey season

Presenter: **Melissa DiFabio**

Melissa DiFabio¹, Jessie Oldham², Thomas Buckley¹ ¹University of Delaware, ²Boston Children's Hospital

P3-R-151 How persons with transtibial amputation regulate lateral stepping in destabilizing environments

Presenter: Jonathan Dingwell

Jonathan Dingwell¹, Jonathan Rylander², Joseph Cusumano¹, Jason Wilken³

¹Pennsylvania State University, ²Baylor University, ³University of lowa

P3-R-152 Knee joint function and walking biomechanics in patients in acute phase anterior cruciate ligament (ACL) tear

Presenter: Dmitriy Skvortsov

Sergey Kaurkin¹, Dmitriy Skvortsov¹, Alexander Akhpashev¹

¹Federal Research and Clinical Centre of Russia's Federal Medical-Biological Agency (FNKC FMBA)

P3-R-153 Function of the knee joint during walking before and after the meniscus resection

Presenter: Dmitriy Skvortsov Sergey Kaurkin¹, Dmitriy Skvortsov¹, Alexander

Akhpashev¹

¹Federal Research and Clinical Centre of Russia's Federal Medical-Biological Agency (FNKC FMBA)

S - Proprioceptive function and disorders

P3-S-154 Reduced balance stability in obese individuals is associated with low tactile sensibility of the feet soles

Presenter: Luis Teixeira Luis Teixeira¹, Jair Bueno¹, Caroline Souza¹, Daniel Coelho¹ ¹University of São Paulo

P3-S-155 Investigation of the relationship between talking time on the mobile phone and neck proprioception, pain, and disability in the university students

Presenter: Gamze Yalcinkaya

Gamze Yalcinkaya¹, Nurullah Buker¹, Yesim Sengul ¹Health Sciences Institute

U - Robotics

P3-U-156 Does the selection of specific control strategy options during walking with a wearable robotic exoskeleton affect muscle synergies in healthy individuals?

Presenter: Manuel J. Escalona Manuel Escalona¹, Daniel Bourbonnais¹, Damien Le Flem¹, Michel Goyette¹, Cyril Duclos¹, Dany Gagnon¹ ¹University of Montreal

P3-U-157 Do high and low spinal cord injured subjects learn exoskeleton skills differently?

Presenter: Rosanne van Dijsseldonk

Rosanne van Dijsseldonk¹, I.J.W. van Nes², H. Rijken², H. van de Meent³, N.L.W. Keijsers²

¹Radboudumc & Sint Maartenskliniek, ²Sint Maartenskliniek, ³Radboud University Medical Center

V - Sensorimotor control

P3-V-158 A balance control model for vestibular loss subjects balancing on a tilting support

Presenter: Lorenz Assländer

Lorenz Assländer¹, Georg Hettich², Markus Gruber¹, Thomas Mergner³

¹University of Konstanz, ²Aesculab, ³Neurological University Clinics, Freiburg

P3-V-159 Synergies between postural control, eye movements and cognitive involvement in precise visual tasks performed upright

Presenter: Cédrick Bonnet

Cedrick Bonnet¹, Tanguy Davin¹, Jean-Yves Hoang¹, Stéphane Baudry² ¹University of Lille, ²Université Libre de Bruxelles

P3-V-160 How does visual input affect the learning process of a balance skill?

Presenter: Orit Elion

Orit Elion¹, Yotam Bahat², Itamar Sela³, Itzchak Siev-Ner⁴, Patrice (Tamar) Weiss³, Avi Karni³ ¹Ariel University, ²Sheba Medical Center, ³University of Haifa, ⁴C. Sheba Medical Center, Tel Hashomer, Israel

P3-V-161 Obesity and gait: where/when body representation and its symbolic counterpart meet in the brain?

Presenter: Marie Fabre

Marie Fabre¹, Pascale Chavet¹, Théo Fornerone¹, Benjamin Juan¹, Olivier Abossolo², Fabrice Pardo³, Lionel Dany¹, Laurence Mouchnino¹

¹Aix Marseille Université, ²Clinique St Christhophe, ³Clinique St Christophe

P3-V-162 Postural control during induced stabilization of the center of mass and light touch

Presenter: Dasa Gorjan

Dasa Gorjan¹, Angélina Bellicha², Jernej Camernik¹, Wael Bachta², Jan Babic¹ ¹Institute Jozef Stefan, ²Sorbonne Université - ISIR

P3-V-163 Comparison of EMG parameters during uphill walking on a self-paced treadmill and outdoors

Presenter: Eunice Ibala Eunice Ibala¹, Karen Chase¹, Nicholas Smith¹, Andrew Kerr¹ ¹University of Strathclyde

P3-V-164 Anticipatory postural adjustments while initiating a step on a flat surface or over an obstacle

Presenter: **Hirofumi Ida Hirofumi Ida**¹ ¹Jobu University P3-V-165 Central sensorimotor integration delays: Does response latency to pseudorandom balance perturbations relate to reaction time?

Presenter: Douglas Martini

Douglas Martini¹, Lucy Parrington¹, Peter Fino², Robert Peterka¹, Laurie King¹ ¹Oregon Health & Science University, ²University of Utah

P3-V-166 Augmenting balance with tactile robotic feedback

Presenter: Raymond Reynolds

Raymond Reynolds¹, Lorenz Asslander², Craig Smith¹ ¹University of Birmingham, ²University of Konstanz

P3-V-167 Foot sole cutaneous stimulation mitigates plantar flexor fatigue Presenter: **Simone Smith**

Simone Smith¹, Geoffrey Power¹, Leah Bent¹ ¹University of Guelph

P3-V-168 Lightbulb characteristics affect stepping biomechanics during stair descent in young and older adults

Presenter: Neil Thomas

Neil Thomas¹, Costis Maganaris¹, Thomas O'Brien¹, Richard Foster¹, Vasilios Baltzopoulos¹, Carolyn Lees¹, Timmion Skervin¹, Mark Hollands¹ ¹Liverpool John Moores University

P3-V-169 Performance of dual-tasking between arm movement and postural adjustments in subjects with stroke

Presenter: Yosuke Tomita

Yosuke Tomita¹, Nicolas Turpin², Daniele Piscitelli³, Mindy Levin³

¹Takasaki University of Health and Welfare, ²University of la Réunion, ³McGill University

P3-V-170 Unidirectional beta connectivity from motor cortex to muscle is involved in voluntary modification of locomotor muscle activity in humans

Presenter: Hikaru Yokoyama

Hikaru Yokoyama¹, Naotsugu Kaneko², Yohei Masugi³, Tetsuya Ogawa², Katsumi Watanabe⁴, Kimitaka Nakazawa²

¹Tokyo University of Agriculture and Technology, ²University of Tokyo, ³Tokyo International University, ⁴Waseda University

ToC 130

W - Tools and methods for posture and gait analysis

P3-W-171 Straight vs curved walking: Quantification of dynamic balance through an instrumented version of the Figure-of-8-Walk-Test

Presenter: Valeria Belluscio

Valeria Belluscio¹, Elena Bergamini¹, Yuri Russo¹, Amaranta Orejel Bustos¹, Marco Tramontano², Giuseppe Vannozzi¹

¹Interuniversity Centre of Bioengineering Bohnes, University of Rome Foro Italico, ²Santa Lucia Foundation

P3-W-172 Extending the centre of pressure to include handhold forces

Presenter: James Borrelli Emily King¹, James Borrelli², Vicki Komisar³, Brian Maki⁴, Alison Novak⁴

¹University of Waterloo, ²University of Maryland, ³Simon Fraser University, ⁴Toronto Rehabilitation Institute

P3-W-173 Normative data for Balance Tracking System (BTrackS) modified Clinical Test of Sensory Integration and Balance (mCTSIB)

Presenter: Daniel Goble

Daniel Goble¹, Harshan Brar¹, Elise Brown¹, Charles Marks¹, Harsimran Baweja²

¹Oakland University, ²San Diego State University

P3-W-174 Gaps between gait measured in the lab during usual and dual-task walking compared to freeliving walking: Evidence from 24/7 monitoring of older adults

Presenter: Inbar Hillel

Inbar Hillel¹, Laura Avanzino², Lynn Rochester³, Ugo Della Croce⁴, Marcel Olde Rikkert⁵, Silvia Del Din⁶, Pieter Ginis⁷, Nir Giladi¹, Anat Mirelman¹, Jeff Hausdorff¹

¹Tel-Aviv Sourasky Medical Center, ²University of Genoa, ³Institute of Neuroscience, Newcastle University, ⁴University of Sassari & Interuniversity Centre of Bioengineering of the Human Neuromusculoskeleta, ⁵Donders Institute, Radboud University Medical Centre, ⁶Newcastle University, ⁷KU Leuven

P3-W-175 Development of a body balance assessment system with integrated virtual reality technology; construct validity testing in healthy older adults

Presenter: Yu Imaoka

Yu Imaoka¹, Nadja Saba¹, Anne Vanhoestenberghe², Eling de Bruin³

¹ETH Zurich, ²University College London, ³Karolinska Institutet

P3-W-176 A novel functional ambulation toolkit to assess children with locomotor deficits

Presenter: Alexandra Leclerc-Valade

Alexandra Leclerc-Valade¹, Jolin Jiang¹, Liav Lugassy¹, Zachary Weber¹, Elizabeth Dannenbaum², Claire Perez¹, Filomena Pietrangelo², Lora Salvo², Joyce Fung¹ ¹McGill University, ²Jewish Rehabilitation Hospital (CISSS-Laval)

P3-W-177 A do-it-yourself low-cost foot switch device to measure stride intervals

Presenter: Masahiro Okano Masahiro Okano¹, Tadao Isaka¹ ¹*Ritsumeikan University*

P3-W-178 Performance of surface and fine-wire electrodes over time when recording from the tibialis anterior in walking

Presenter: Joanna Reeves

Joanna Reeves¹, Chelsea Starbuck¹, Wasseem Rafiq¹, Chris Nester¹ ¹University of Salford

P3-W-179 Integrating technology into clinical practice for the assessment of balance and mobility: Perspectives of exercise professionals practicing in retirement and long-term care

Presenter: Kathryn Sibley

Kathryn Sibley¹, Karen Van Ooteghem², Elizabeth Inness³, Avril Mansfield³, Jaimie Killingbeck⁴ ¹University of Manitoba, ²University of Waterloo, ³Toronto *Rehabilitation Institute, ⁴Schlegel Villages*

P3-W-180 Accepting the null hypothesis: How and why?

Presenter: John Stins John Stins¹ ¹Vrije Universiteit Amsterdam P3-W-181 Muscle coordination changes with assistance from lumbar support exoskeleton

Presenter: Chun Kwang Tan

Chun Kwang Tan¹, Hideki Kadone¹, Kousei Miura², Tetsuya Abe², Masao Koda², Yasushi Hada¹, Masashi Yamazaki¹, Yoshiyuki Sankai¹, Kenji Suzuki¹

¹University of Tsukuba, ²Faculty of Medicine, University of Tsukuba Hospital

P3-W-182 Application and evaluation of the extrapolated centre of mass as a clinical gait stability measure

Presenter: Albert Vette Albert Vette¹, Jeremy Hall¹, Juan Forero¹, Jacqueline Hebert¹ ¹University of Alberta

P3-W-183 Influence of taking a rest between measurement of stabilometry with eyes open and closed

Presenter: Tomoe Yoshida Tomoe Yoshida¹, Masahiko Yamamoto¹, Kazuo Ishikawa², Eigo Ohmi³ ¹Toho University, ²Japanese Red Cross Akita Hospital, ³Akita University

X - Vestibular function and disorders

P3-X-184 Abnormal subjective vertical perception in patients with vestibular migraine

Presenter: Mitsuhiro Aoki

Mitsuhiro Aoki¹, Hisamitsu Hayashi¹, Bunya Kuze¹ ¹Gifu University Hospital

P3-X-185 Recovery of head trunk kinematics during functional movement tasks following unilateral vestibular hypofunction

Presenter: Lee Dibble

Lee Dibble¹, Brian Loyd¹, Grace Hunt¹, Mark Lester², Serene Paul³

¹University of Utah, ²Army-Baylor University, ³University of Sydney

P3-X-186 Vestibular precision and postural sway variability

Presenter: Adam Goodworth

Adam Goodworth¹, Yulia Valko², Robert Peterka³, Daniel Merfeld⁴, Faisal Karmali⁵

¹University of Hartford, ²University Hospital Zurich, ³Oregon Health & Science University, ⁴Ohio State University, ⁵Massachusetts Eye and Ear Infirmary

P3-X-187 Risk of falling in bilateral vestibulopathy: How should we predict this?

Presenter: **Nolan Herssens**

Nolan Herssens¹, Evi Verbecque², Wim Saeys¹, Luc Vereeck¹, Bieke Dobbels³, Julie Moyaert³, Vincent Van Rompaey¹, Ann Hallemans¹ ¹University of Antwerp, ²University of Hasselt, ³Antwerp University Hospital

Y - Visual function and disorders

P3-Y-188 Virtual perturbations: Individual differences in static posture

Presenter: Robert McIlroy Robert McIlroy¹, Michael Barnett-Cowan¹ ¹University of Waterloo

P3-Y-189 Visual exploration during walking and turning in mild traumatic brain injury and controls

Presenter: Samuel Stuart

Samuel Stuart¹, Lucy Parrington¹, Doug Martini¹, Peter Fino², James Chesnutt¹, Laurie King¹ ¹Oregon Health & Science University, ²University of Utah

P3-Y-190 Measuring dynamic balance control in children with cerebral palsy

Presenter: Ruud van der Weel

Ruud Van der Weel¹, Audrey van der Meer¹ ¹Norwegian University of Science & Technology

EXHIBITOR PROFILES

AMTI

AMTI understands that the best research begins with the best equipment. We continually strive to develop the most accurate and reliable Multi-Axis Force Platforms and Sensors for your biomechanics research. Our innovative OPTIMA performance system revolutionizes multi-axis force measurement technology offering a 10-fold improvement in accuracy over any other force platform on the market. Whether studying Balance, Gait, or Sport Biomechanics, researchers and clinicians around the world rely on AMTI platforms to deliver the most accurate force measurements. Shouldn't you? Stop by our booth or visit our website www. amti.biz to learn more about what we have to offer.

sales@amtimail.com www.amti.biz

APDM Wearable Technologies

APDM offers solutions for quantifying human movement by combining Opal sensors with sophisticated algorithms. Deployed by thousands of researchers and clinicians worldwide, APDM solutions streamline data collection and analysis. Mobility Lab generates spatiotemporal gait and balance outcome measures and has been used to analyze disease-sensitive outcome measures in neurodegenerative conditions as well as to more precisely track a patient's response to an intervention by clinicians and in pharma clinical trials. Other solutions include Motion Studio for access to precisely synchronized raw inertial data and Moveo Explorer for automated full body kinematic data analysis including joint angles.

sales@apdm.com apdm.com @APDMInc

Charnwood Dynamics Limited/Codamotion (TT 4)

(TT3)

(Booth 3)

Pioneering 3D Motion capture for 30 years, for research and Clinical applications. Our technology is used by leading Gait Labs worldwide. An active marker technology that is cost affective, portable and easy to use.

info@codamotion.com www.codamotion.com @codamotion

CIR Systems/GAITRite

(Booth 10)

World Leader for 26 years in Temporo-Spatial Gait Analysis, GAITRite® Systems capture with unsurpassed accuracy, objective data necessary to reliably document patient condition and progression. Our unique proprietary software identifies, through a multitude of specific Spatial-Temporal Gait parameters, asymmetries and deviations from normal time and distance values. In the research venue, GAITRite® allows for the building of large subject databases for extensive data mining. The new 3D Camera allows for upper body data collection by simply walking on the system. GAITRite has in excess of 11,000 worldwide peer reviewed publications, in research & numerous disciplines.

sales@gaitrite.com www.gaitrite.com

Cometa Systems

Cometa Systems is a leading provider of medical and research instruments for motion analysis. Our wireless EMG and IMU sensors are the smallest on the market, can be easily integrated with other systems, and are the only ones to be IPX7 certified for underwater use.

sales@cometasystems.com www.cometasystems.com

Delsys Europe

(Booth 8)

DELSYS^{*}

Delsys, being at the forefront of innovative developments in Electromyography (EMG) for more than 25-years, has Biomechanical and theoretical approaches to gait and posture; Mathematical models of joint and muscle established the foundation for unmatched signal quality, consistency, reliability and, continues to challenge the mechanics; Neurological and musculoskeletal function status quo to put technology in the hands of researchers in gait and posture; The evolution of upright posture and clinicians. The Delsys Trigno wireless technology builds and bipedal locomotion; Adaptations of carrying loads, walking on uneven surfaces, climbing stairs etc; spinal upon this solid foundation allowing unrestricted subject motion while maintaining unmatched signal quality. biomechanics only if they are directly related to gait and/ Acutely demonstrated through the latest Trigno sensor or posture and are of general interest to our readers; The technologies such as Trigno Avanti and Trigno Quattro effect of aging and development on gait and posture; Psychological and cultural aspects of gait; Patient sensors providing EMG and IMU through both desktop and mobile applications. education.

admin@delsyseurope.com www.delsys.com/home/ @delsysinc

ToC

134

Elsevier (Gait & Posture Journal)

Sponsor of the Emerging and Promising Scientist Awards

Gait & Posture is the official journal of ISPGR and is a vehicle for the publication of up-to-date basic and clinical research on all aspects of locomotion and balance.

The topics covered include: Techniques for the measurement of gait and posture, and the standardization of results presentation; Studies of normal and pathological gait; Treatment of gait and postural abnormalities;

www.journals.elsevier.com/gait-and-posture

(TT6)

EXHIBITOR PROFILES

Gait Up SA

Born in research 18 years ago, Gait Up combines wearable sensors, algorithms and biomechanics, to provide world leading motion analysis. We empower wearables to rival accuracy of legacy motion labs, with real life convenience that counts. Our mission is to enhance health, sport, and society by providing easy yet accurate measures of the 6th vital sign: Movement.

albin.pinard@gaitup.com

MediTouch

MediTouch was established in 2004 with the aim of developing and distributing innovative physical rehabilitation solutions for hospital, community clinic and home care use. The HandTutor is used worldwide in major rehabilitation facilities, private occupational and physiotherapist practices and by home care patients. The balancetutor's new technology allows the therapist to create postural perturbation such as a slip or a trip. Its advanced technology utilizes the platform's movement in a medial/lateral and forward/backward direction while the patient is standing, walking or running allowing customized postural control practice in the specific gait phase.

info@meditouch.co.il @MediTouch

(Booth 14) Motek

(TT2)

Motek is a global leader in virtual reality and robotics research and rehabilitation, combining almost 20 years of experience in high-level technologies. Building the most versatile devices, Motek integrates the latest technologies ensuring real-time data quality and synchronization. From global knowledge exchange to unique research set-ups, Motek empowers every stage of your research on human movement. Together, we will set future standards to maintain healthy and independent lifestyles for everyone.

NDI (Northern Digital Inc) Sponsor of the Aftab Patla Innovation Award

NDI is a global-leading innovator and manufacturer of 3D measurement and motion tracking solutions. Since 1981 we've helped our customers bring optical and electromagnetic tracking to image-guided surgery, biomechanics research, automotive assembly, AR/VR, and so much more. NDI is headquartered in Waterloo, Canada, with 225+ employees across four global offices.

msci@ndigital.com www.ndigital.com **@ndimeasurement**

(Booth 1)

Neurosoft

(TT1)

The Neurosoft Company was founded in 1992. Nowadays it is one of the largest manufacturers of the medical equipment for neurophysiology and electrodiagnostics. We manufacture devices for EEG, EMG, ECG, TMS, IOM, PSG, rehabilitation and other fields. Rehabilitation is one of the most promising and priority vectors of the company's development. The Neurosoft Company can offer the customers the Steadys gait assessment and training system with biofeedback, the Multitrainer digital system for cardiac rehabilitation and the Neuro-MS/D transcranial magnetic stimulator that has proven itself in the treatment of many psychiatric and neurological disorders.

Skorobogatko@neurosoft.com

PAL Technologies Ltd

(Booth 4)

The activPAL(tm) provides researchers with an objective measure of free-living lying, sedentary, upright and ambulatory activities. The new activPAL4+ model includes a magnetometer and barometer in addition to the standard acceleration sensor allowing turning during stepping to be guantified as well as stair ascent. The activPAL is unique in being able to quantify time cycling and in car travel, providing the opportunity to understand mobility choices (active travel vs car). This gives the researcher previously unreported yet valuable insights into the context of free-living behaviours, providing the evidence to link health outcomes with physical behaviours.

info@paltechnologies.com www.paltechnologies.com **@paltechnologies**

ToC

136

ProtoKinetics Gait Analysis Walkways

(Booth 9)

PROTOKINETICS

ProtoKinetics offers The Premiere Gait Analysis System: Zeno Walkway powered by PKMAS software: Quantify, Track, Trend, Report... Measure the impact exercise, bracing and Partial Body Weight Support treadmill training have on functional outcomes and to mitigate fall risk. Capture and analyze difficult gaits such as: freezing, overlapping footfalls, weaving walker tracks, guad canes and toe drags that other walkways cannot. In addition, PKMAS offers unique and standardized protocols: walking, turning, gait initiation, static balance, Limits of Stability. Primary Gait Screen and the Four Square Step Test. Please visit our booth to experience our best in class product knowledge in person!

sales@protokinetics.com protokinetics.com @protokinetics

Vicon Motion Systems Ltd

(Booth 2)

Sponsor of the 2019 ISPGR World Congress App

Vicon delivers highly accurate 3D motion capture systems for use in gait analysis. Nearly400 clinical gait labs worldwide use Vicon technology. Its flagship camera line, the Vicon Vantage, offers the highest resolution, frame rates and accuracy available, allowing detailed motion capture in almost any environment. Bonita is Vicon's next-generation camera, combining size, power, and price performance into one amazing solution. Vicon was established in Oxford, UK, in 1984 and is now a subsidiary of the Oxford Metrics Group Plc. Some of Vicon's global clients include Liverpool John Moores University, University of Vienna; Nuffield Orthopaedic Centre; University of Brussels; Northumbria University.

tina.holland@vicon.com www.vicon.com

www.ispgr.org | @ISPGR | JUNE 30 - JULY 4

POSTER & EXHIBITOR FLOOR PLAN

MEETING FLOOR PLANS

THANK YOU TO OUR SUPPORTERS

SPONSORS

EXHIBITORS

DELSYS*

