"Cutting Edge of Posture and Gait Research"

PROGRAM 2nd Joint World Congress ISPGR / Gait & Mental Function June 22nd-26th, 2013 Akita, Japan

Akita View Hotel and Atorion

2rd Joint ISPGR and Gait & Mental Function Congress **Program-at-a-Glance** Akita View Hotel | June 22 - 26, 2013

		Keynote Lecture IV Hausdorff (8:30 - 9:30) Hisho A		Symposia VI Lynn Rochester (10:00 - 12:00) Bolan	- 13:00) o A o B						Oral Session	or 0.17 Modelling (15:15 - 16:15) 0.18 Vestibular functions & disrorders	(16:15-17:15) Botan	۶.						
Wednesday 26- Jun	Registration		Break (9:30 - 10:00)	Symposia V Adolfo Bronstain (10.00 - 12.00) Hisho B	Ich Seminar (12:00 Yoshiyuki Sankai - Hish Dai Yanagihara - Hisho		Symposia VIII	(13:15 - 15:00) (13:15 - 15:00) Hisho B Break (15:00 - 15:15) Oral Session		Oral Session	S 0.15 Sensorimoto control II (15:15 - 16:15) (15:15 - 16:15) (16:15-17:15)	0.16 Sensor control II 0.16 Sensor control II (16.15-17.15) Histo B (17.15-18.30) Histo A								
				Symposia IV Fay Horak (10:00 - 12:00) Histro A	F		Symposia VII Vivian	Weerdesteyn (13:15 - 15:00)		acional Ind	Oral Session	0.13 Tools & method: N (15:15 - 16:15) 0.14 Tools & method: V	(16:15 - 17:15) Hisho A							
_				Dpintes Dpitors) AseC noits	ຸດເພ	inl\ noitsti	Regis	_											
		Keynote Lecture II Robinovich (8:30 - 9:30) Hisho A					би	Lecture Oral Session	0.11 Sensorimoto control I	(14:30 - 15:30)	O.12 Falls & falls prevention II (15:30 -16:30) Botan									
Tuesday 25-100	Registration		reak (9:30 - 10:00)	ireak (9:30 - 10:00)	Poster Session III (10:00 - 12:00) Atorion B1F.2F	Buffet Lunch Exhibitors Mitobe))) Hisho A		GR Member Meet (13:00 - 14:00) Hisho A	g Young Scientis (14:00 - 14:30) Hisho A	Oral Session	0.9 Neurological diseases III	(14:30 - 15:30)	0.10 Neurological diseases IV (15:30 - 16:30) Hisho B	Poster Session IV (16:30 - 18:30)	Atorion B1F.2F		3ala Dinner (19:00 - 21:00) Hisho A/B			
				-	Seminar ((12:30-13:00		lsp	Promising (Oral Session	0.7 Falls & falls prevention	(14:30 - 15:30)	.8 Tools & methods III (15:30 - 16:30) Hisho A	. <u>c</u>			Q E				
		pitots				PaqO Aead noitemroinl/ noiterteige9 eroitdinka					I I									
Monday 24- hun	gistration	Keynote Lecture II Dieterich) - 9:30) Hisho A	Keynote Lecture II Dieterich 20 - 9:30) Hisho A eak (9:30 - 10:00)	Dieterich (8:30 - 9:30) Hisho A Break (8:30 - 1000)	Symposia II Symposia II Jorunn L. Toshihisa Helbostad Murofushi (10.00 - 12.00) (10.00 - 22.00) Hisho B Haho B	rr (12:00 - 13:00) sho A - Hisho B	sak (13:00 - 13:15)		ster Session (13:15 - 15:15) Atorion B1F.2F.			aak (15:15 - 15:30)	ster Session II (15:30 - 17:30)	Atorion B1F.2F.	Dinner 30 - 18:30)	Isho A/B	oncert panee and Western Music 00 - 20:30) torion 4F			
	Rei	(8:						Exhibitors Symposia I Joyce Fung (1000- 12:00) Histo A	Lunch Semina Thomas Brandt - H Kimitaka Nakazawa	B		Ĕ.			ā	Ĕ		(2.F)	-	Collaboration of Ja
				Oral Session O.5 Cognitive & cognitive impairments (10:00 - 11:00) O.6 Habilitation (11:00 - 12:00) Botan	ion Desk Or	rmai	Symposia IX B. Bloem	Y. Okuma (13:00 - 15:00) Redation Redation	DOG	Maximising the ite (15:00 - 15:30)	ubaki		suo							
Sunday 23- Iun	Registration	Keynote Lecture I Pearson (8:30 - 9:30) Hisho A	Break (9:30 - 10:00)	Break (9:30 - 10:00) Oral Session 0.3 Neurological diseases 1 (10:00 - 1100) 0.4 Neurological diseases 11 (11:00 - 12:00) (11:00 - 12:00) Hish B	Lunch & Exhibito (12:00 - 14:00) ree Time / Excurs	(12:00 - 19:00) Consensus Meeting on Stabilometry - Towards		International Standar dization (13:00-14:30) Tsubaki USer Guide to M ISPGR Websit		Tst	ee Time / Excursio (12:00 - 19:00)									
				Oral Session Oral Session 0.1 Tools & Methods I (0.00 - 11:00) (10:00 - 12:00) Hilsto A Hilsto A	Ē								Ē							
Segistration /Information Desk Open																				
Saturday				Satellite Meeti Lena Ting (09:00 - 12:30 College Plaza			Free Time		Board Meetin	(14:00 - 16:00) Kiku			Opening Cerem (16:30 - 17:15) Hist	Opening Keynote L Berthoz (17:20 - 18:20) Hish	Welcome Demonst (18:20 - 19:00)	Welcome Recer (19:00 - 20:30) Hisho B				
Time	8:00 8:15	8:30 8:45 9:00 9:15	9:30 9:45	10:00 10:15 10:30 11:45 11:00 11:15 11:30 11:45	12:00 12:15 12:30 12:45	13:00	13:15 13:30 13:45	14:00 14:15	14:30 14:45	15:00	15:15 15:30	1 15:45 16:15 16:0 16:15 16:0 10:0	16:30 16:45 17:00 17:15 00 01 01 01 01 00	17:30 17:30 18:00 18:15 stration /Inf	18:30 60 18:45	19:00 19:15 19:45 20:00 20:00	20:30 20:45 21:00			

Table of Contents

About ISPGR	
Welcome Letter	
Leadership	
Congress Gener	al Information
Pre-Congress Sa	atellite Meetingpage 10
	Awards page 10
Detailed Progra	m
	Saturday, June 22
	Sunday, June 23
	Monday, June 24
	Tuesday, June 25
	Wednesday, June 26
Keynote Speake	ers
Symposium Abs	stracts
Poster Author Ir	ndex
Poster Sessions	
	Poster Session 1
	Poster Session 2
	Poster Session 3
	Poster Session 4
Exhibitor Profile	espage 68
Poster Floor Pla	ns
Thank You to Ou	ur Supportersback

The International Society for Posture and Gait Research (ISPGR), formerly called the International Society of Posturography is a staff-supported, member driven organization with 500+ members located in over 20 countries around the world.

The society provides a multidisciplinary forum for basic and clinical scientists, provides member benefits and holds regular meetings in order to:

- Present and discuss the latest research and clinical findings relating to the control of posture and gait and related disorders.
- Facilitate interaction between members who meet from all corners of the globe.
- Promote the broad discipline of posture and gait research.

ISPGR History

The International Society for Posture and Gait **Research** was formed in 1969 under the name the International Society of Posturography, by a group of basic scientists and clinicians who had similar interests in quantifying postural sway during stance. Most of the Society members in the first years were from Europe and Japan. The first meetings took place in Madrid (1971), Smolenica (1973), Paris (1975), Sofia (1977), Amsterdam (1979), Kyoto (1981) and Houston (1983). At the 1983 meeting in Houston the founders realized that interest in posturography had expanded to include the entire area of balance and gait control and at the annual meeting in 1986, the Society was renamed to its current name. By the 1992 meeting in Portland, Oregon, the Society had grown to over 300 members worldwide and member interests expanded to include sensory and motor control neurophysiology, biomechanics, movement disorders, neural circuitry, vestibular function, neurological disorders, effects of development and aging, rehabilitation, robotics, modeling, neural compensation, and motor learning as related to control of balance and gait.

In 2010, recognizing opportunities to grow the organization, the board secured professional association and conference management support and made the decision to host a conference with the Gait and Mental Function Conference. 2013 marks the 2nd Joint ISPGR and GMF Congress in **Akita, Japan**.

Gait and Mental Function History

The Gait and Mental Function (GMF) Congress was initiated by key researchers and clinicians to review the science that links gait and mental function and to move this new, but rapidly emerging field forward. As a result, the Inaugural Congress, chaired by Nir Giladi, was held in 2006 in Madrid, Spain. The first GMF congress was a great success, in drawing attention to the fact that gait - long regarded as an automatic motor function – is in fact strongly influenced by cognitive functions such as attention, executive function and visual spatial orientation. At the time, the relationships between mental functions, walking and fall risk were garnering much attention in the scientific community, and the congress provided an ideal forum for the discussion of these relationships in a cross-disciplinary forum. This congress, and the subsequent two congresses, developed an active and vibrant cross-disciplinary forum by bringing together researchers and clinicians from a wide variety of fields, including cognitive neuroscientists, neurologists, neurophysiologists, psychiatrists, geriatricians, gerontologists, rehabilitation specialists, physical and occupational therapists, as well as researchers of gait, posture and mental functions. Subsequent GMF Congresses were held in 2008 in Amsterdam, under the chairmanship of Bastiaan R. Bloem and Marcel Olde Rikkert, and in 2010 in Washington, DC, with Lisa Schulman and Stephanie Studenski leading the organization. These Congresses built on the work and interchange initiated at the first Congress and developed additional "hands on" workshops that strengthened the goal of bringing researchers and clinicians together to discuss the implications and opportunities inherent in this field of science.

It is a great pleasure and honor for us to welcome you to the 2nd Joint World Congress of ISPGR and Gait and Mental Function in Akita, Japan. The 2013 ISPGR Congress in Akita is the third to be held in Japan. Most of you are aware that this is the postponed ISPGR congress which had been scheduled in June 2011 and was cancelled due to the aftermath of the earthquake in northeast Japan. However, thanks to your membership and heart felt support in addition to the generosity of our sponsors, we are delighted to host this meeting here in Akita at this time.

We are pleased to announce that the total number of submitted papers is almost the same as those for the cancelled congress in 2011. I warmly thank all participants for supporting ISPGR, and connecting as a strong society. We can anticipate many new scientific insights and a valuable exchange of scientific findings and knowledge, and deepen our friendships and our society as well. We sincerely hope that every participant can enjoy the whole program and have fantastic memories of this world congress.

The theme for this world congress is "Cutting Edge Posture and Gait Research". The program includes five key note speakers: Professors Alain Berthoz, Keir Pearson, Marianne Dietrich, Stephen Robinovitch, and Jeffery Hausdorff, who will present research updates from their field of expertise and from basic to clinical fields, on posture and gait. Professors Thomas Brandt, Kimitaka Nakazawa, Yoshiyuki Sankai, Dai Yanagihara, and Kazutaka Mitobe will share with us their recent research findings from clinical research to robotics during the luncheon seminars. In addition to these, there will be nine featured symposia, covering almost all fields of control system of posture and gait. Furthermore, 72 oral presentations and 302 posters are to be presented during the congress.

A special and original Akita exhibition and show will be presented at the Akita Kanto Welcome Event, Evening Concert and Gala Dinner. We look forward to sharing our city with you and we hope that everyone will enjoy the program at the 2nd Joint World Congress of ISPGR and Gait and Mental Function.

Welcome to Akita!

Kazuo Ishikawa

Congress Chair: **Kazuo Ishikawa**, MD, PhD

marcahiteo yamanotos

Congress Co-Chair Masahiko Yamamoto, MD, PhD

President

Emily A. Keshner, PT, EdD

Chair and Professor, Department of Physical Therapy, College of Health Professions, Temple University, Philadelphia, United States

Treasurer

Mark Carpenter, PhD

Canada Research Chair, Associate Professor, School of Kinesiology, University of British Columbia, Vancouver, Canada

Vice Presidents

Kazuo Ishikawa, MD, PhD

Professor and Chairman, Department of Otorhinolaryngology & Head-Neck Surgery, Akita Graduate School of Medicine, Akita University, Japan

Brad McFadyen

Dept of Rehabilitation, Laval University, Quebec City, Canada

Secretary

Sandra Brauer (Asia-Pacific) PhD, BPhty Division of Physiotherapy, The University of Queensland, Brisbane, Australia

Elected Representatives

Vivian Weerdesteyn (Europe), PhD Assistant Professor, Department of Rehabilitation, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Jeffrey Hausdorff (Asia), PhD

Director of the Laboratory for the Analysis of Gait and Neurodynamics at Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel,

Mark Hollands (Europe), BSc, PhD, Reader in Sensorimotor Neuroscience, Liverpool John Moores University, UK

Stephen Robinovitch (North America), PhD, MSc Professor, School of Engineering Science, Simon Fraser University, Vancouver, Canada

Past President

Bastiaan R. Bloem, MD, PhD, Full Professor in Neurology, with a specific chair in Movement Disorders, Department of Neurology, University Medical Center, St Radboud, Nijmegen, Netherlands

Local Organizing Committee

Raymond Chong Georgia Health Sciences University, USA

Katsumi Doi Kinki University, Japan

Yoshihiro Ehara Niigata University of Health and Welfare, Japan

Katsuo Fujiwara Kanazawa University, Japan

Nobuhiko Furuya Gunma University, Japan

Takashi Hanakawa National Center of Neurology and Psychiatry, Japan

Masahiro lida Tokai University, Japan

Yatsuji Ito Gifu University, Japan

Juichi Ito Kyoto University, Japan

Mi Jung Kim Hanyang University, Korea

Ken Kitamura Tokyo Medical and Dental University, Japan

Izumi Koizuka St.Marianna University School of Medicine, Japan

Toshiki Matsunaga Akita University, Japan

Futoshi Mori Yamaguchi University, Japan

Toshihisa Murofushi Teikyo University School of medicine University Hospital, Mizonokuchi Japan

Hisao Nagata The Institute for Science of Labour, Japan

Yasushi Naito Kobe City Medical Center General Hospital, Japan

Kimitaka Nakazawa Tokyo University, Japan **Hisato Ohno** Railway Technical Research Institute, Japan

Yasuyuki Okuma Juntendo University Shizuoka Hospital, Japan

Yoichi Shimada Akita University, Japan

Hideo Shojaku University of Toyama, Japan

Mamoru Suzuki Tokyo Medical University, Japan

Noriaki Takeda The University of Tokushima, Japan

Yasuhiko Takei Kitasato University Kitasato Institute Hospital, Japan

Toshihiro Tsuzuku College de France, CNRS, LPPA, Japan

Shinichi Usami Shinshu University, Japan

Yukio Watanabe University of Toyama, Japan

Toshiyasu Yamamoto Okayama University of Science, Japan

Toshiaki Yamanaka Nara Medical University, Japan

Hideo Yamane Osaka City University, Japan

Hiroshi Yamashita Yamaguchi University, Japan

Dai Yanagihara Tokyo University, Japan

Min Yin Nanjing Medical University, China

Tomoe Yoshida Toho University Sakura Medical Center, Japan

Yi-Ho Young National Taiwan University Hospital, Taiwan

Scientific Committee

The Scientific Committee is responsible for developing the scientific program for the International Congress, along with abstract review process.

John Allum University Hospital Basel, Switzerland

Alain Berthoz Collège de France, France **Bastiaan Bloem** Radboud University Nijmegen Medical Center, Netherlands

Sandra Brauer The University of Queensland, Australia

Adolfo Bronstein Imperial College London, UK

Mark Carpenter University of British Columbia, Canada

Lorenzo Chiari University of Bologna, Italy

Helen Cohen Baylor College of Medicine, USA

Ruth Dickstein University of Haifa, Israel

Jacques Duysens KU-Leuven, Belgium

Jim Frank University of Waterloo & St. Jerome's University, Canada

Joyce Fung McGill University, USA

Jorunn Helbostad Norwegian University of Science and Technology, Norway

John Jeka University of Maryland, USA

Emily Keshner Temple University, USA

Kyu-Sung Kim Inha University Hospital, Korea

Stephen Lord Neuroscience Research Australia, Australia

Mans Magnusson Lund University Hospital, Sweden

Brian Maki Toronto Rehabilitation Institute / University of Toronto, Canada

Caterina Rosano University of Pittsburgh, USA

Lisa Shulman University of Maryland School of Medicine, USA

Stephanie Studensk University of Pittsburgh, USA

Leadership

Beatrix Vereijken Norwegian University of Science and Technology, Norway

Nir Giladi Tel Aviv Medical Center, Israel

Sharon Henry University of Vermont, USA

Christine Assaiante CNRS, France

Aurelio Cappozz Università degli studi di Roma, Italy

Lyudmila Chernikova Research Centre of Neurology of RAMS, Russia

Fay Horak Oregon Health and Science University, USA Herman Kigma Netherlands

Brad McFadyen CIRRIS-U. LAVAL, Canada

Antonio Nardone Fondazione Salvatore Maugeri (IRCCS), Italy

Mark Redfern University of Pittsburgh, USA

Marcel Olde Rikkert Radboud University Nijmegen Medical Center, Netherlands

Pierre-Paul Vidal Rene Descartes University/CNRS, France

Marjorie Woollacott University of Oregon, USA

「A Promise for Life」は、私たちの信念、価値観、そして私たちが 顧客やコミュニティ、株主をはじめとする利害関係者の皆様に 対し、毎日伝えようと努力しているものを表しています。

アボット ジャパン株式会社 東京都港区三田3-5-27

Meeting Venues

College Plaza, Akita, Japan The Satellite Meeting

The Akita View Hotel, Akita, Japan All conference sessions will take place at this location

The Atorion Building, Akita, Japan

All poster sessions will take place at this location

(please review the floor plan at the back of the program for further details)

Registration

Joint ISPGR & GMF Congress

Registration for the Congress includes admission to all sessions, a copy of the printed program, access to all coffee breaks and lunches daily. In addition, all social events, including the Welcome Reception, Gala Dinner, Concert and Closing Ceremony are included in your registration. If you are staying at the Congress Headquarters, the Akita View Hotel, breakfast is included in your room rate.

Additional Tickets

Tickets can be purchased separately for your guests and/or children for all social functions.

Name Badges

Your name badge is your admission ticket to the conference sessions, coffee breaks, meals, reception and Gala. Please wear it at all times. At the end of the conference we ask that you return your badge to the registration desk, or at one of the badge recycling stations.

ISPGR Board Members, Exhibitors and Staff will be identified by appropriate ribbons.

Dress Code

Dress is casual for all ISPGR meetings and social events.

Registration and Information Desk Hours

The Registration and Information Desk, located in the foyer, will be open during the following dates and times:

Saturday	June 22	15:00 - 20:00
Sunday	June 23	08:00 - 14:00
Monday	June 24	08:00 - 16:00
Tuesday	June 25	08:00 - 16:00
Wednesday	June 26	08:00 - 16:00

Speaker Information

For Oral Sessions, each room will be equipped with

- 1 PC laptop
- 1 LCD projector
- 1 microphone
- 1 laser pointer

All speakers in Symposia and Oral Sessions must upload their presentations at least 60 minutes prior to their presentation at speaker information desk situated in the foyer outside Hisho A and Hisho B meeting room.

Social Events:

The Welcome Reception

Saturday June 22, 18:20 – 20:30

The Welcome Event will be held directly after the opening lecture. This one-of-a-kind "Kanto" festival demonstration and a traditional Japanese drumming performance is not to be missed! Connect with friends and colleagues, and experience the local culture.

Located: Akita View Hotel

Monday Evening Dinner

Monday June 24, 17:30 - 18:30

This dinner will take place at the Akita Hotel, Hisho A & B

Collaboration of Japanese and Western Music

Monday June 24, 19:00-20:30

You can enjoy a marvelous encounter of Japanese and Western music! This concert will take place at the Akita Integrated Life Cultural Hall / Museum Atorion.

Gala Dinner

Tuesday June 25, 19:00 – 21:00

A great networking opportunity for all delegates! This will take place at the Akita View hotel, Hisho A & B

Closing ceremony

Wednesday June 26, 17:15 - 18:30

This closing event will take place in Hisho A

Board Service

Board elections are held annually around the conference dates. Board nominations are open to all members in good standing. If you are interested in serving on the ISPGR Board or one of the ISPGR Committees please see one of the existing Board members or contact the Secretariat.

ISPGR Secretariat

Society Secretariat & Conference Management

De Armond Management Ltd.

Marischal De Armond Jude Ross Breda Hamill

E-mail: ispgr@ispgr.org

Poster Information

Set-up and Removal

There are four Poster Sessions during the Congress, and posters will remain in situ for the duration of the Congress and every presenter must set-up and remove their posters during the following times:

Set-up:	Monday, June 24	07:30 - 08:30
Remove:	Tuesday, June 25	18:30 - 19:00

Presentation Times

Poster Session 1: (odd numbers, < 150)

Dedicated time: Monday, June 24 13:15 – 15:15

Poster Session 2: (odd numbers, > 150) Dedicated time: Monday, June 24 15:30 – 17:30

Poster Session 3:	(even numbers, >	150)
Dedicated time:	Tuesday, June 25	10:00 - 12:00

Poster Session 4: (even numbers, < 150)

Dedicated time: Tuesday, June 25 16:30 – 18:30

Information on Poster Authors (Lead), Poster Numbers and Poster Titles begins on page 46. Poster sessions can be identified by the colour card on your allocated poster board, please ensure these are visible during dedicated times. For a complete copy of all the poster abstracts, please visit the ISPGR website, where you can download an electronic copy.

Easy reference Poster floor plans can be found on page 72.

Staff

ISPGR staff from De Armond Management Ltd can be identified by the orange ribbons on their name badges. Feel free to ask any one of our staff for assistance. For immediate assistance please visit the registration desk.

Membership

Membership in ISPGR is open to scientists, researchers, clinicians and students from around the world involved in the many research and practical aspects of Gait and Posture. Membership dues support the ISPGR's mission of creating a community of multidisciplinary posture and gait researchers and students.

Member Benefits

- Exclusive opportunity to submit abstracts for review and consideration for presentation at Society Meetings
- Opportunity to register for Society Meetings at reduced registration rates
- Professional development and networking
- Access to online resources and conference
 proceedings
- Opportunity to submit applications for student scholarships and awards
- 20% discount on a subscription to ISPGR's official publication, Posture & Gait, published by Elsevier 8 times per year
- Ability to post and review job and grant opportunities
- Opportunity to post news and information on related events
- Opportunity to vote in annual elections for the Board of Directors

Congress General Information

- Opportunity to stand for election to the Board of Directors
- Opportunity to serve as an officer of the Board of Directors
- Opportunity to serve on Society committees

Member Categories

Regular Members

Any person who is engaged in research or clinical practice related to posture and gait is eligible to be a regular member.

Student and Post Doc Members

Students enrolled in degree granting programs at institutions of higher learning and post doctoral fellows are eligible to be student members.

Member Dues

ISPGR membership dues are paid annually and cover the calendar year from October 1 to September 30 each year. Current membership dues are:

Regular Member - \$100 Student/Post-Doc Member - \$50

サノフィ株式会社 〒163-1488 東京都新宿区西新宿三丁目20番2号 東京オペラシティタワー www.sanofi.co.jp

Neural mechanisms underlying motor deficits and neurorehabilitation

Presenters: Lena H Ting, J. Lucas McKay, Carolynn Patten, Randy D Trumbower

Location: College Plaza

Description

Clinical tests lack the sensitivity to reveal the neural mechanisms underlying motor deficits and thus to inform rehabilitation that may lead to more specific and targeted interventions. Muscle activity reflects relevant neural activity, but we lack appropriate tools for quantifying muscle coordination and the resulting functional implications. Lena Ting will present advances in analysis of electromyographic (EMG) signals using muscle synergy and sensorimotor feedback analysis to reveal mechanisms of motor impairment in gait and balance, with examples in stroke and spinal cord injury. Lucas McKay will demonstrate changes in sensorimotor feedback revealed during reactive balance in individuals with Parkinson's Disease following an adapted tango intervention. Carolynn Patten will present differences in muscle synergies in stroke survivors that may discriminate responders from non-responders to a neurorehabilitation intervention. Randy Trumbower will discuss changes in muscle synergy structure for overground walking after single-day acute intermittent hypoxia treatment in individuals with chronic motor-incomplete spinal cord injury. In addition to the oral presentations, we are soliciting a limited number of posters for a focused poster session on the topic. Posters need not be different from those presented at the main ISPGR meeting, but are intended to generate discussion around understanding neural mechanisms underlying rehabilitation.

Awards

Research and Innovation Award in memory of Aftab Patla

Sponsored, once again, by Northern Digital, Inc. the congress will offer two student poster presentation awards in honour of Dr. Aftab Patla. One award will be for basic science and one for clinical science. Recipients will be chosen from a panel of researchers based on several criteria including:

creativity and originality of research / clarity of presentation / level of understanding

The award winner will be announced on the last day of the conference, Wednesday June 26 Note: This award is for student poster submissions only

Promising Young Scientist Award Winner 2013

The Promising Young Scientist Award acknowledges superior research by a young investigator in Posture and/or Gait. The Awards Committee is pleased to announce this year's award recipient –

Alain Frigon, Université de Sherbooke.

Alain is an Assistant Professor in the Department of Physiology and Biophysics at the Université de Sherbooke, Canada.

Through his research, Alain has:

- Provided new knowledge on the functional recovery of locomotion following spinal cord injury
- Shown that different motor rhythms produced by the mammalian spinal cord have specialized control
 mechanisms
- Shown that interlimb coordination during quadrupedal locomotion is asymmetrically organized.

Alain's presentation will take place on **Tuesday, June 25 from 14:00 – 14:00** in Hisho A room.

Saturday, June 22, 2013

09:00-12:30	Satellite Meeting Neural mechanisms underlying motor deficits and neurorehabilitation				
	Satellite Chair: Lena H. Ting, Emory University and Georgia Institute of Technology				
	Participants: Lena H. Ting, Emory University and Georgia Institute of Technology J. Lucas McKay, Emroy and Georgia Tech Carolynn Patten, VA Medical Centre and University of Florida Randy D. Trumbower				
	(College Plaza, Meitokukan Bld. 2F)				
16:30-17:15	Opening Ceremony				
	(Hisho A)				
17:20-18:20	K.O Opening Keynote Lecture				
	The neuro-cognitive control and development of gait in health and disease. Recent findings				
	Alain Berthoz, Collège de France, France				
	Chair: Shigemi Mori, National Institute for Physiological Sciences, Japan				
	(Hisho A)				
18:20-19:00	Akita Kanto Welcome Event				
	Akita View Hotel				
19:00-20:30	Welcome Reception				
	(Hisho B)				

Sunday, June 23, 2013

08:30-09:30	K.1	Keynote Lecture I				
	Working memory for obstacle avoidance during walking					
	Keir Pearson, University of Alberta, Canada					
	Chair: Stephen Lord, University of New South Wales, Australia					
	(Hisho A)					
10:00-11:00	0.1	Oral Session: Tools and Methods I				
	Chair	: Tatuya Yamasoba, University of Tokyo, Japan				
	O.1.1 The instrumented timed up and go test: potential for assessing alterations in Parkinson's disease clinical subtypes Aner Weiss, Tel Aviv Sourasky Medical Center, Israel					
	0.1.2 and Te	Structural instability of human gait: Espen Ihlen, Norwegian University of Science echnology, Norway				

	O.1.3 Postural control during real and virtual obstacle avoidance: Hirofumi Ida, Jobu University, Japan
	O.1.4 Vestibular stimulation by static magnetic fields: Omar Mian, University College London, England
	(Hisho A)
11:00-12:00	O.2 Oral Session: Tools and Methods II
	Chair: Mark Carpenter, University of British Columbia, Canada
	O.2.1 Plantar arch analysis during stepping on asperities to design a mechanical foot: Yusuke Ogawa, Tokyo University of Agriculture and Technology, Japan
	O.2.2 Walking stability measurement based on plantar skin deformation: Takayuki Shiina, Tokyo University of Science, Japan
	O.2.3 Wearable technology in freezing gait of Parkinson's disease: Literature review: Sylvia Liew HX, Tan Tock Seng Hospital, Singapore
	O.2.4 An instrumented 3-day activity monitoring in Parkinson's disease clinical subtypes: Aner Weiss Tel Aviv Sourasky Medical Center, Israel
	(Hisho A)
10:00-11:00	O.3 Oral Session: Neurological Diseases I
	Chair: Takashi Hanakawa, National Center of Neurology and Psychiatry, Japan
	O.3.1 Asymmetric pedunculopontine network connectivity in freezing of gait from Parkinson's disease: Brett Fling, Oregon Health and Science University, USA
	O.3.2 Supra-spinal control of locomotion in freezers and non-freezers with Parkinson disease: Daniel Peterson, Washington University in Saint Louis, USA
	O.3.3 Increased activation of the frontal lobe is associated with freezing of gait in patients with Parkinson's disease: an fNIRS study: Inbal Maidan, Tel Aviv Souasky Medical Center, Israel
	O.3.4 A practical system for detection of freezing of gait in patients with Parkinson's disease: Yu-Ri Kwon, Konkuk University, South Korea
11.00.12.00	(Hisho B)
11:00-12:00	0.4 Oral Session: Neurological Diseases II
	Chair: Yasuyuki Okuma, Juntendo Oniversity Snizuoka Hospitai, Japan
	disparity between the postural instability gait difficulty and tremor dominant subtypes?: Talia Herman-Feinstein, Tel Aviv Sourasky Medical Center, Israel
	O.4.2 Differences in gray matter atrophy between Parkinson's disease motor subtypes: possible role of GM as a mediator between motor and cognitive function: Jeffrey Hausdorff, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Israel
	O.4.3 Does dysfunction of brainstem reticular structures underlie postural instability in Parkinson's disease?: Jorik Nonnekes, Radboud University Medical Centre, The Netherlands
	0.4.4 Pedunculopontine nucleus-thalamic cholinergic correlates of postural

sensory organization functions in Parkinson disease: Martijn Muller, University of Michigan, USA

(Hisho B)

10:00-11:00**O.5Oral Session: Cognitive and Cognitive Impairments**

Chair: Klaas Postema, University Medical Center Groningen, The Netherlands

0.5.1 Spatial orientation deficit as an early clinical sign of hippocampal dysfunction in mild cognitive impairment: Klaus Jahn, University of Munich, Germany

0.5.2 Effects of concussion on lower extremity inter-joint coordination during obstacle crossing and dual-task walking: Li-Shan Chou, University of Oregon, USA

0.5.3 Associations between gait variability and sustained attention in a community dwelling nationally representative population sample: Isabelle Killane, Trinity College Dublin, Ireland

0.5.4 Dual-tasking during locomotor skill acquisition impairs the expression of the locomotor after-effect: Mitesh Patel, Imperial College London, England

(Botan)

11:00-12:00 **O.6 Oral Session: Habilitation and Rehabilitation**

Chair: Yi-Ho Young, National Taiwan University Hospital, Taiwan

O.6.1 The relationship between physical capacity and both fatigue and fatigability in older people?: Thorlene Egerton, Norwegian University of Science and Technology, Norway

0.6.2 The effect of visual motion stimulation on visual dependency in patients with visual vertigo: Pei-Yun Lee, Imperial College London, England

O.6.3 Effects of preparatory cued step training on gait performance in people with **Parkinson's disease:** Margaret Mak, The Hong Kong Polytechnic University, Hong Kong

O.6.4 Retraining function with exercise based computer games for people with Parkinson's disease: PD-Kinection: Brook Galna, Newcastle University, England

(Botan)

12:00-14:00 Lunch

13:00-15:00

S.9 Symposium IX

Balance and gait disorders: a symptom-based approach

Chairs: Bastiaan R. Bloem University Medical Center, The Netherlands and Yasuyuki Okuma, Juntendo University Shizuoka, Japan

Participants:

Bastiaan R. Bloem, University Medical Center, The Netherlands Corinne Horlings, Radboud University, Nijmegen, The Netherlands Yasuyuki Okuma, Juntendo University Shizuoka, Japan Takashi Hanakawa, National Centre of Neurology and Psychiatry, Japan

(Botan)

13:00-14:30 Consensus meeting on stabilometry - toward international standardization

Chairs: Lorenzo Chiari, University of Bologna, Italy, Masahiko Yamamoto, Toho University School of Medicine, Japan and Pierre Marie Gagey, Institut de Posturologie, France

(Tsubaki Room, Akita View Hotel)

15:00-15:30 User guide to maximising the ISPGR website www.ispgr.org Chair: Breda Hamill, De Armond Management, Canada (*Tsubaki Room*)

Monday, June 24, 2013

08:30-09:30 K.2 **Keynote Lecture II** Functional imaging of vestibular disorders with implications for rehabilitation Marianne Dieterich, Ludwig-Maximilians-University of Munich, Germany Chair: Adolfo Bronstein, Imperial College London, England (Hisho A) 10:00-12:00 **S.1** Symposium I Advanced technologies to enhance sensorimotor integration in postural control Chair: Joyce Fung, McGill University, Canada **Participants:** Joyce Fung, McGill University, Canada W. Geoffrey Wright, Temple University, USA Emily Keshner, Temple University, USA Masahito Mihara, Osaka University, Japan (Hisho A)

S.2 Symposium II

Physical activity monitoring with focus on physical behaviour

Chair: Jorunn L. Helbostad, Norwegian University of Science and Technology, Norway

Participants:

Malcolm Granat, Caledonian University, Scotland Sebastien Chastin, Caledonian University, Scotland Kristin Taraldsen, Norwegian University of Science and Technology, Norway Thorlene Egerton, Norwegian University of Science and Technology, Norway

(Hisho B)

S.3 Symposium III

Disturbances of posture, gait, and space orientation by vestibular dysfunction

Chair: Toshihisa Murofushi, Teikyo University Mizonokuchi Hospital, Japan

Participants:

E. Omi, Akita University, Japan Y.H. Young, Taiwan University, Taiwan C. Fujimoto, Tokyo University, Taiwan Klaus Jahn, University of Munich, Germany

(Botan)

Detailed Program

12:00-13:00	Lunch Seminar
	Effects of sensory input on spinal and corticospinal excitabilities during robot- assisted stepping
	Kimitaka Nakazawa, The University of Tokyo, Japan
	Chair: Kichiro Taguchi, Shinshu University, Japan
	(Hisho B)
	Visual height intolerance and imbalance
	Thomas Brandt, Ludwig-Maximilians-University, Germany
	Chair: M. Magnusson, Lund University Hospital, Sweden
	(Hisho A)
13:15-15:15	Poster Session I
	(Atorion)
15:15-15:30	Break
15:30-17:30	Poster Session II
	(Atorion)
17:30-18:30	Welcome Dinner
	(Hisho B)
19:00-20:30	Concert
	Collaboration of Japanese and Western Music
	(Atorion Concert Hall)

Tuesday, June 25, 2013

K.3 Keynote Lecture III
Protective responses in older adults for avoiding injury during falls
Stephen N. Robinovitch, Simon Fraser University, Canada
Chair: Jim Frank, University of Waterloo & St. Jerome's University, Canada
(Hisho A)
Poster Session III
(Atorion)
Buffet Lunch / Exhibitors

(Hisho A & B Foyer)

12:30-13:00	Lunch Seminar
	Magnetic motion capture system as a convenient posture measuring tool
	Kazutaka Mitobe, Akita University, Japan
	Chair: M. Yamamoto, Toho University Sakura Medical Center, Japan
	(Hisho A)
13:00-14:00	ISPGR Member Meeting
	(Hisho A)
14:00-14:30	Promising Young Scientist Lecture
	The study of interlimb coordination during split-belt locomotion before and after spinal cord injury in the adult cat
	Alain Frigon, Universite de Sherbrooke, Canada
	Chair: Bradford McFadyen, Laval University, Canada
	(Hisho A)
14:30-15:30	0.7 Oral Session: Falls and Falls Prevention
	Chair: Hisao Nagata, Institute for Science of Labour, Japan
	0.7.1 White matter integrity and fall risk in older people: A diffusion tensor imaging study: Kim Delbaere, University of New South Wales, Australia
	O.7.2 White matter microstructural organization and gait stability in older adults: Sjoerd Bruijn, K.U. Leuven, Belgium
	0.7.3 Higher level gait disorders: the role of midbrain neurodegeneration:
	Adèle Demain, CR-ICM 1er étage CIC, France
	Chair: Bradford McFadyen, Laval University
	O.7.4 Predicting falls among people with Parkinson's disease with and without cognitive impairment: Ann Ashburn, University of Southampton, England
	(Hisho A)
15:30-16:30	O.8 Oral Session IV: Tools and Methods III
	Chair: Juichi Ito, Kyoto University, Japan
	O.8.1 Reliability and validity of a modular-based gait analysis system for assessing temporal spatial gait parameters in normal subjects: Pootithan Phonrod, King Mongkut's University of Technology Thonburi, Thailand
	O.8.2 A 3D-stabilogram as a new method to visualize and analyze postural sway during standing: Beatrix Vereijken, Norwegian University of Science and Technology, Norway
	O.8.3 Detailed ambulatory 3D gait analysis with only body worn sensors - quality and clinical relevance in multi-moment progress monitoring in post operative ACL rehabilitation: Chris Baten, Roessingh Research and Development, The Netherlands
	O.8.4 Gait asymmetry assessment by Dynamic Time Warping applied to motion capture data: Adam Switonski, Polish-Japanese Institute of Information Technology, Poland (<i>Hisho A</i>)

— 16 —

14:30-15:30Oral Session V: Neurological Diseases III

Chair: Lorenzo Chiari, University of Bologna, Italy

0.9.1 Gait is selectively affected by disease severity in early Parkinson's disease: Sue Lord, Newcastle University, England

0.9.2 The effect of a 4-week training program in people with Parkinson's disease on actual mobility: a single blind randomised clinical trial: Sandra Brauer, The University of Queensland, Australia

0.9.3 Individuals with none, one, two, but not three risk factors of Parkinson's disease differ significantly to Parkinson's like postural deficits in 715 healthy elderly: Sandra Hasmann, University of Tuebingen, Germany

0.9.4 The effects of localised temperature changes on walking and neuromuscular function in hereditary and spontaneous spastic paraparesis: Jon Marsden, Plymouth University, England

(Hisho B)

15:30-16:30 **O.10 Oral Session: Neurological Diseases IV**

Chair: Futoshi Mori, Yamaguchi University, Japan

0.10.1 Sensory integration in postural control of dyslexic children: Jose Barela, University of Cruzeiro do Sul, Brazil

O.10.2 Trunk bradykinesia and foveation delays during whole-body turns in spasmodic torticollis: Adolfo Bronstein, Imperial College London, England

O.10.3 Cutaneous reflex modulation and self-induced reflex attenuation in cerebellar patients: Wouter Hoogkamer, KU Leuven, Belgium

Effect of dual-tasking on intentional versus reactive balance control: Tanvi Bhatt, University of Illinois, USA

(Hisho B)

14:30-15:30O.11Oral Session: Sensorimotor Control I

Chair: Jim Frank, University of Waterloo & St. Jerome's University, Canada

O.11.1 Effects of limiting anterior displacement of the center of foot pressure on anticipatory postural control during bilateral arm flexion: Katsuo Fujiwara, Kanazawa University, Japan

O.11.2 Transient sensory reorganisation for body sway regulation with intermittent finger tip feedback is affected by inhibition of the left prefrontal cortex using rTMS: Leif Johannsen, Technische Universität München, Germany

O.11.3 Absence of transfer in postural adaptation to moving platform across voluntary sway and arm raising tasks: Masahiro Shinya, The University of Tokyo, Japan

O.11.4 The ability to recover balance with a single backward step in people after stroke is highly dependent on leg inclination angle at foot contact: Digna de Kam, Radboud University Nijmegen Medical Centre, The Netherlands

(Botan)

15:30-16:30 **O.12 Oral Session: Falls and Falls Prevention II**

Chair: Fay Horak, Oregon Health and Science University, USA

0.12.1 Ankle dorsiflexor strength relates to the ability to restore balance during a backward support surface translation: Masahiro Fujimoto, University of Maryland School of Medicine, USA

O.12.2 Towards the automated detection of near falls in patients with Parkinson's disease and idiopathic elderly fallers: Tal Freedman, Tel Aviv Sourasky Medical Center, Israel

0.12.3 Does lack of arm movement after tripping cause falls in older adults?: Mirjam Pijnappels, VU University, The Netherlands

0.12.4 Long-term changes of fall predictors: preliminary results from the FARSEEING project: Lorenzo Chiari, University of Bologna, Italy

(Botan)

16:30-18:30 **Poster Session IV** (*Atorion*) 19:00-21:00 **Gala Dinner**

(Hisho A/B)

Wednesday, June 26, 2013

08:30-09:30 K.4 Keynote Lecture IV

What happens when body-fixed sensors meet Parkinsonian gait? A look back to the future

Jeffrey Hausdorff, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Israel

Chair: Fay Horak, Oregon Health and Science University, USA

(Hisho A)

10:00-12:00 **S.4 Symposium IV**

Rehabilitation update

Chairs: Fay Horak, Oregon Health and Sciences University, USA and Futoshi Mori, Yamaguchi University, Japan

Participants:

Bradford McFadyen, Laval University, Canada Yoichi Shimada, Akita University Graduate School of Medicine, Japan Gammon Earhart, Washington University in St Louis, USA Måns Magnusson, Lund University Hospital, Sweden

(Hisho A)

S.5 Symposium V

Visuo-cognitive control of balance in vestibular disease

Chair: Adolfo Bronstein, Imperial College London, England

Participants:

Adolfo Bronstein, Imperial College London, England Mark Carpenter, University of British Columbia, Canada J Staab, Mayo Clinic, USA

(Hisho B)

S.6 Symposium VI

Predicting disease: is gait a useful biomarker?

Chair: Jeff Hausdorff, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Israel

Participants:

Lynn Rochester, Newcastle University, England Anat Mirelman, Tel-Aviv Sourasky Medical Center, Israel Brook Galna, Newcastle University, UK Stephen Lord, University of NSW, Australia

(Botan)

12:00-13:00 Lunch Seminar

Robot suit HAL and clinical applications for locomotor disorder

Yoshiyuki Sankai, University of Tsukuba, Japan

Chair: Ehara Yoshihiro, Niigata University of Health and Welfare, Japan

(Hisho A)

Role of the cerebellum in adaptive control of posture and locomotion

Dai Yanagihara, University of Tokyo, Japan

Chair: Yukio Watanabe, University of Toyama, Japan

(Hisho B)

13:15–16:00 **S.7 Symposium VII**

What startles can tell us about posture and gait control

Chair: Vivian Weerdesteyn, Radboud University Medical Centre, The Netherlands

Participants:

Tim Inglis, School of Kinesiology, University of British Columbia, Canada Jacques Duysens, KU Leuven, Belgium Mark Carpenter, University of British Columbia, Canada Vivian Weerdesteyn, Radboud University Medical Centre, The Netherlands

(Hisho A)

S.8 Symposium VIII

Body and mind interactions in pain and postural control

Chair: Paul Hodges, The University Of Queensland, Australia

Participants:

Jaap van Dieen, VU University, Amsterdam Rogerio Hirata, Aalborg University, Denmark Katsuo Fujiwara, Kanazawa University, Japan

(Hisho B)

15:15-16:15 **O.13 Oral Session: Tools and Methods IV**

Chair: Mamoru Suzuki, Tokyo Medical University, Japan

O.13.1 A proposal for a new definition of a near fall: Inbal Maidan, Tel Aviv Souasky Medical Center, Israel

0.13.2 Portable fNIRS is a valid technique to study prefrontal cortical activation patterns during dual task walking in Parkinson's patients Nieuwhof Freek, Radboud University Nijmegen Medical Center, The Netherlands

O.13.3 Using detrended fluctuation analysis to explain inter-limb coordination and toe clearance control during walking: Simon Taylor, Victoria University, Australia

O.13.4 Leg and joint stiffness in children with spastic diplegia cerebral palsy during walking: Hsing-Po Huang, National Taiwan University, Taiwan

(Hisho A)

16:15-17:15 O.14 Oral Session: Tools and Methods V

Chair: Sandy Brauer, the University of Queensland, Australia

O.14.1 Towards estimating fall risk from daily life measurements of trunk accelerations in older adults: Mirjam Pijnappels, VU University, The Netherlands

O.14.2 Exergaming for balance training in elderly. Part 1: User requirements: Klaas Postema, University Medical Center Groningen, The Netherlands

O.14.3 Exergaming for balance training in elderly. Part 2: Quantification of postural control in elderly during balance training using an exergame: Mike van Diest, INCAS3, The Netherlands

O.14.4 Effect of task order presentation on dual task interference on gait - consequences and recommendations: Brook Galna, Newcastle University, England

(Hisho A)

15:15-16:15 **Oral Session: Sensorimotor Control II**

Chair: Bradford James, Laval University, Canada

O.15.1 Effects of aging on visual-vestibular interactions for maintaining stability while standing up from a sitting position: Grace Kai Yan Lui, Queen's University, Canada

O.15.2 Extracting self-motion information from visual motion to balance the body: Brian Day, UCL Institute of Neurology, England

O.15.3 The relationships between eye movement and turning characteristics during on-the-spot turns: Rebecca Robins, Liverpool John Moores University, England

O.15.4 Gaze anticipation during human locomotion remains in darkness: Colas Authie, UMR7152 LPPA CNRS & Collège de France, France

(Hisho B)

16:15-17:15 **O.16 Oral Session: Sensorimotor Control III**

Chair: Emily Keshner, Temple University, USA

0.16.1 Cataract surgery in older people improves gait speed in subdued lighting: Jorunn L. Helbostad, Norwegian University of Science and Technology, Norway

O.16.2 Increase in frontal brain activation during dual tasking in healthy young individuals: an fNIRS study: Anat Mirelman, Tel-Aviv Sourasky Medical Center, Israel

O.16.2 Foot plantar vibration does not improve postural control in young healthy people after plantar ice immersion: Chich- Haung Yang, Tzu-Chi University, Taiwan

O.16.3 Functional characteristics of spinal motoneurons in rat and monkey those acquired bipedal locomotor capability: Futoshi Mori, Yamaguchi University, Japan

(Hisho B)

15:15-16:15 **0.17 Oral Session: Modelling**

Chair: Joyce Fung, McGill University, Canada

0.17.1 Leg stiffness increased with load to achieve resonant gait dynamics: Sue Park, Kaist, South Korea

O.17.2 Training teenagers with cerebral palsy on a split-belt treadmill: from kinetic adaptation to motor learning: Simona Bar-Haim, Ben-Gurion University of the Negev, Israel

O.17.3 Hip-ankle synergy in human biped balancing resulting from multisensory integration in feedback control: Georg Hettich, University Freiburg, Germany

0.17.4 Feedback control of balance muscle activity in individuals with Parkinson's disease before and after adapted tango rehabilitation: J. Lucas McKay, Georgia Tech and Emory University, USA

(Botan)

16:15-17:15 **O.18 Oral Session: Vestibular Functions and Disorders**

Chair: Masahiko Yamamoto, Toho University, Japan

0.18.1 Gait impairment in downbeat nystagmus syndrome: Klaus Jahn, University of Munich, Germany

O.18.2 Recalibration of vestibular afference for orientation and navigation: Daina Sturnieks, Neuroscience Research, Australia

O.18.3 Contrived management for suspected autoimmune inner ear disease with abnormal eye movement: Mamoru Suzuki, Tokyo Medical University, Japan

O.18.4 The association between impaired perception of verticality and cerebral white matter lesions in the elderly patients with orthostatic hypotension: Mitsuhiro Aoki, Gifu University Graduate School of Medicine, Japan

(Botan)

17:15-18:30Closing Ceremony

(Hisho A)

22

Alain Berthoz Collège de France/CNRS Paris, France

Alain Berthoz is Honorary Professor at the College de France, member of the French Academy of sciences and the Academy of Technologies, the Academia Europae, American Academy of Arts and Sciences, and other Academies (Belgium, Bulgaria).

He is an Engineer, and is an expert in Biomechanics, Psychology and Neurophysiologist. He is a world known specialist of the physiology of multisensory integration, spatial orientation, the vestibular system, the oculomotor system, locomotion, and spatial memory. He is currently cooperating, within European Projects and with robotics groups in Japan for bio-inspired robotics and humanoids. He is the author of more than 300 papers in International

journals and the author of several books on these subject among which The Brain's Sense of movement, Harvard Univ Press (O. Jacob 1997), Emotion and Reason The cognitive foundations of decision making, Oxford Univ Press (O. Jacob 2000) and Simplexity Yale University Press (O. Jacob 2011).

The neuro-cognitive control and development of gait in health and disease. Recent findings

Locomotor trajectories are controlled by neurocognitive, anticipatory top-down mechanisms. I will review the following recent findings and theoretical views:

- a) Similar "simplex" laws subserve hand and locomotor trajectory formation. We have shown that goal oriented locomotor are very stereotyped due to optimization principles. We have also shown a hierarchical top-down organisation with an anticipation of the locomotor trajectory by gaze. In addition we have shown that the brain uses for both hand movement and locomotor trajectory formation combinations of several geometries (Euclidian, affine, equi-affine).
- b) Emotion does modify this organisation of gait.
- c) The generation of locomotor trajectories uses brain mechanisms underlying spatial memory and navigation. Several different brain subsystems are involved in the control of trajectories to near space, far space or environment space. In addition these brain mechanisms involve different networks for egocentric or allocentric coding of navigation including the hippocampus, parahippocampus, retrosplenial cortex, cerebellum. I will show recent fMRI and virtual reality experiment demonstrating lateralization. The left and right hippocampus are involved in respectively sequential egocentric and global allocentric control of navigation. I will also allude to the role of the vestibular system in navigation.
- d) New experimental paradigms, the "walking Corsi" and the "Magic carpet", " the "Walking Stroop" paradigms allow the study of cognitive strategies for the organisation of locomotor trajectory formation and visuo-spatial memory. We have used them to demonstrate the role of gaze in planning locomotor trajectories, and the development of locomotor trajectory formation in children and adolescents. I will also show some recent results concerning children patients with Cerebral Palsy, and aging persons with Mild Cognitive Disorders.
- e) I will also briefly show how these findings can inspire the design of Humanoid Robots.

Keir Pearson University of Alberta, Canada

Keir Pearson is a neurophysiologist who received his Bachelor of Engineering (Electrical) from the University of Tasmania and his PhD in Physiology from Oxford University. He is currently an Emeritus Professor in the Department of Physiology at the University of Alberta, Canada, and former Director of the University Centre for Neuroscience. He has held a Tier I Canada Research Chair in Movement Physiology and he is a Fellow of the Royal Society of Canada. His research program is focused on the nervous control of walking, with special interest in the role of vision and memory in guiding stepping movements.

Working memory for obstacle avoidance during walking

Stepping over an obstacle during walking usually relies on visual information about the location of the obstacle relative to the body. However, visual fixation of the obstacle is not necessary at the time the legs move to avoid the obstacle. For example, guadrupeds and humans often view the terrain two or three steps ahead of their current position, and store visual information about target locations in working memory to guide leg movements at a later time. In guadrupeds, a unique form of working memory is used to guide the hind legs over obstacles that have already been stepped over by the forelegs. This working memory is very long-lasting (many minutes) and incorporates precise information about the size and position of the obstacle relative to the hind legs. I will present data from electrophysiological and lesion studies that demonstrate that neuronal systems in the parietal cortex are necessary for establishing this memory and for representing the current position of the obstacle relative to the moving body. The lesion studies also indicate that these representations in the parietal cortex are used specifically to retain long-lasting memories (up to minutes) of obstacle location, and that short-lasting memories (up to a few seconds) are represented in other brain regions. I will present the hypothesis that remapping of obstacle location relative to the moving body depends in part on sequential activation of different populations of neurons in parietal cortex, with each population representing the specific location of the obstacle relative to the position of the legs. These and other observations will be discussed within the concept of a body schema, that is, how a representation of body geometry is used and updated to control motor commands as an animal interacts with the external world.

Marianne Dieterich Ludwig-Maximilians-University of Munich, Germany

Prof. Dr. med. Marianne Dieterich, is Head of the Department of Neurology, Ludwig-Maximilians-University, Klinikum Grosshadern, Germany. She is a former Research Fellow with the Primate Laboratory of the Vestibular Laboratory, Dept. of Neurology, Kantonsspital Zürich, Switzerland. She has also worked with the Alfried Krupp Hospital Essen, the Universities of Bochum and Essen, and Johannes Gutenberg-University Mainz, Germany.

In 2013 she was honored with the 'Designation of Corresponding Fellow of the American Neurological Association (FANA)' and in 2011 was awarded the 'Award of the German Society of Clinical Neurophysiology and Functional Imaging (DGKN) for outstanding teaching'.

Functional imaging of vestibular disorders with implications for rehabilitation

The last 15 years have brought new insights into the vestibular system thanks to lesion studies and functional imaging of the human brain. The latter technology was at first applied only to healthy subjects but now it is being more often used with patients who have diseases localized to the vestibular system, so-called vestibular disorders. The groundwork for such investigations was provided by neurophysiological and tracer animal studies in the 1970s to the 1990s. These studies located several areas in the cerebral cortex, especially in the temporo-parietal cortex, that formed a sort of network. All of these areas showed multisensory reactions, not only to postural stimuli but also to stimuli of the visual and sensory systems. The center of this network was located in the parieto-insular vestibular cortex, the PIVC. Today, owing primarily to the findings of functional imaging studies, we know that such a network also exists in the human temporo-parietal cortex of both hemispheres. Moreover, this human network has a number of particular features. For example, the "activation" of the network in healthy subjects is not equally distributed in the two halves of the brain; while the right hemisphere is predominant in right-handers, the left hemisphere is predominant in left-handers. The side stimulated also plays a role: activation is more strongly pronounced in that half of the brain that is on the same side as the stimulated ear. In addition to such activations we know there are simultaneous "deactivations" that are localized in the visual and somatosensory cortices of both brain halves during vestibular stimulation. A complementary activation-deactivation pattern was observed during visual stimulation: activations in the occipital and parietal visual areas occurred simultaneously with deactivations in the multisensory vestibular cortex. These observations led to the hypothesis of the existence of a reciprocal inhibitory interaction between the two sensory systems of the cortex, i.e., between the visual and the vestibular systems. The data from brain activation studies of the vestibular system in healthy subjects can now be compared with the data of patients with various peripheral and central vestibular disorders in the acute stage of disease and lateron during compensation. Such comparisons promise to deepen our understanding of these syndromes, will have implications for rehabilitation and thus will speed the development of new therapies for these disorders.

Stephen Robinovitch Simon Fraser University, Canada

Stephen Robinovitch, Ph.D., is a Professor and Canada Research Chair at Simon Fraser University in Vancouver, Canada. His research focuses on the cause and prevention of falls and fall-related injuries in older adults, and incorporates biomechanics, neurophysiology, and clinical research methods. He currently leads a program in "Technology for Injury Prevention in Seniors" (www.sfu.ca/TIPS), involving long-term care facilities who participate as "real life" laboratories for capturing objective evidence of falls (through video and wearable sensors), and exploring the clinical effectiveness of engineering interventions such as wearable hip protectors and compliant flooring for preventing fall-related injuries.

Protective responses in older adults for avoiding injury during falls

Over 30% of older adults living independently, and 60% of those in long-term care (LTC) fall at least once each year. Any fall from standing onto a firm surface has the potential to cause life-threatening brain injury, and carries 20 times the energy required to fracture the elderly proximal femur. It is therefore not surprising that falls are the number one cause of injuries, including 95% of hip fractures and 60% of traumatic brain injuries, in older adults. Indeed, a more perplexing issue is the observation that most falls in older adults are benign events: only 10-15% result in some form of injury, and only 1-2% cause hip fracture or head injury. Understanding the factors that separate injurious and non-injurious falls is essential to developing improved approaches to fall injury prevention. In this talk, I will review evidence of the crucial role of "safe landing responses" for avoiding injury during falls, derived from laboratory experiments and field studies involving video capture of real-life falls in LTC. I will also discuss how these responses are altered through the lifespan, and how they may be enhanced through interventions. Specific topics to be discussed include: (1) "Factor of risk" for injury: the energy management problem of falls; (2) Lessons from epidemiology on falling behaviours: effect of age, functional status, and wearable hip protectors on injury patterns during falls; (3) Video-captured evidence of strategies by older adults for avoiding impact to the head and hip, and reducing impact velocity during falls; (4) The effect of disease and functional status on fall severity in older adults. The talk should be of interest to both researchers and care providers interested in the prevention of fall-related injuries in older adults.

Jeffrey Hausdorff Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Israel

Dr. Jeffrey M. Hausdorff is the Director of the Laboratory for the Analysis of Gait and Neurodynamics at Tel-Aviv Sourasky Medical Center, Professor at the Sackler School of Medicine and Sakol School of Neuroscience, and Lecturer in Medicine at Harvard Medical School. With a background in biomedical engineering and a strong interest in wearable computing, Dr. Hausdorff studies gait and postural control, fractal physiology, gait variability, motor control, and brain function. Recent investigations focus on imaging and the genetics of gait alterations, the potential of virtual reality to improve motor-cognitive interactions, and new methods for assessing and minimizing fall risk.

What happens when body-fixed sensors meet Parkinsonian gait? A look back to the future

For about two decades now, researchers have been studying the walking pattern of patients with Parkinson's disease using body-fixed sensors. The understanding of gait dynamics in Parkinson's disease evolved over this period. It has been shown that certain features of the stride-to-stride fluctuations in gait are related to disease severity and that some properties respond to dopamine and other therapeutic interventions. Associations between measures of gait dynamics and specific aspects of cognitive function have also been uncovered. Insights into the perplexing and debilitating episodic phenomenon known as freezing of gait have been achieved, along with intriguing observations on the relationship between genetic mutations common in Parkinson's disease and specific alterations in gait dynamics.

In parallel, the sensors and algorithms that have been used to evaluate gait dynamics in Parkinson's disease and related disorders have also evolved. Today, the traditional clinical examination of Parkinson's disease can be augmented by instrumenting clinical tests like the Timed Up and Go with small, easy-to-use body-fixed sensors. The combination of these inertial measurement units and new technology like wireless functional near infrared spectroscopy (fNIRS) and virtual reality also hold promise for providing a new window into the control and treatment of gait dynamics. At the same time, the clinical exam is expanding outside the walls of the clinic. The assessment of gait dynamics during community ambulation will further enhance our understanding of both the continuous and the episodic gait disturbances in Parkinson's disease, the disabling motor response fluctuations, and fall risk.

This lecture will take us on a brief tour of some of the advances made over the past twenty years in Parkinson's disease and related populations and speculate about where we are headed toward in the future.

Symposium IX: Sunday June 23, 13:00 - 15:00, Botan

Balance And Gait Disorders: A Symptom-Based Approach

Chair: Bastiaan R. Bloem, Radboud University Nijmegen Medical Center, The Netherlands

Chair: Yasuyuki Okuma, Juntendo University Shizuoka Hospital, Japan

Careful recognition of neurological gait and balance disorders is very important in everyday clinical practice, for a variety of reasons. First, gait and balance disorders impose significant disability for affected individuals. Second, difficulties with walking and maintaining balance force patients to reduce their physical activities, and physical inactivity is in turn associated with a host of negative consequences, including a worsening of disease symptoms, development of osteoporosis, sleep disorders, and a reduced survival. Third, specific features of gait and balance can offer important diagnostic clues in patients with an uncertain clinical diagnosis. Importantly, changes in gait typically develop early on in the course of many neurological disorders. To improve the clinical recognition of gait and balance disorders, several classification schemes have been proposed. In case of gait disorders, it is a common approach to define the type of gait disorder according to the main presenting feature (1,2). Examples include an ataxic gait, a dystonic gait, or a waddling gait. The typical way of teaching students and residents about such gait disorders is to present a typical phenotype, and to list all the possible features associated with this specific type of neurological gait disorder. However, this is not the way patients usually present to the doctor in clinical practice. Indeed, patients may display only one or at most a few abnormal gait or balance signs, and some of these may fit with different types of neurological disorders. In my presentation, I will offer a new approach to disorders of gait, balance and posture, taking typical presenting features as the starting point for recognising the associated neurological syndrome, and for building a differential diagnosis.

A weak balance, balance and falls in patients with neuromuscular disorders

Corinne Horlings, B.G.M. van Engelen, B.R. Bloem, Radboud University Medical Center, The Netherlands

Both the central and peripheral nervous system contribute to balance control. For studying the influence of the peripheral nervous system on balance control mechanisms, one can examine balance in patients with specific neurological disorders, such as sensory ataxia (due to sensory loss in e.g. patients with polyneuropathy) or muscle weakness. However, in patients with neuromuscular disorders balance is hitherto poorly studied. Even though muscle weakness is an important risk factor for falls, as was shown in the elderly. In patients with neuromuscular disorders, falls are common and clinically relevant. This was shown in patients with fascioscapular humeral disease, who have weakness in both distal and proximal muscles. In a prospective 3 month follow-up, 47% of these patients reported a fall, and injuries occurred in almost 70% of the patients. We also examined the influence of distal versus proximal muscle weakness on balance control, by measuring balance reactions that were probed using sudden platform tilts in different directions in patients with pure distal muscle weakness versus proximal weakness. Here, distal weakness caused greater centre of mass (COM) instability than proximal weakness, and mainly in the pitch plane. Patients with distal weakness also reported greater fall frequency retrospectively. Compensation strategies consisted of increased knee movements and arm movements, which in distal weakness patients were only partly effective. Future studies should focus on formulating muscle weakness thresholds and correlating these with COM instability in order to predict fall risk. Perhaps, rehabilitation for these patients should focus on enhancing compensation strategies in order to prevent falls.

Freezing of gait in Parkinson's disease

Yasuyuki Okuma, Juntendo University Shizuoka Hospital, Japan

Freezing of gait (FOG) is a common and very disabling symptom in Parkinson's disease (PD). It is usually observed in the advanced stage of the disease, although a mild form can be seen in the early stage. FOG occurs more frequently in the off-state than in the on-state. The mechanism underlying the pathogenesis of FOG include sequence effect of a progressive shortening of step length owing to deficient internal driving, impaired automaticity, impaired gait rhythmicity and gait cycle coordination, perceptual malfunction, and frontal executive dysfunction. FOG is considered a result of these multiple gait impairments. Modulation of gait coordination by lateralized (asymmetric) subthalamic stimulation may improve FOG. Walking-through-the-doorway tasks are used to study perceptual malfunction, suggesting that responses to action-relevant visual information are exaggerated in PD with FOG. Falls are also a significant problem in PD patients. FOG is the most common cause of falls in advanced-stage PD patients, particularly in the off-state and transition-state between on and off. Our attempt to objectively evaluate FOG and falls in everyday life using a triaxial accelerometer will be presented.

Imaging and physiological approaches to gait and postural disturbance in Parkinson's disease and related disorders

Takashi Hanakawa, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan and PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

The mechanisms of how the central nervous system controls walking and standing remain unclear in humans. The lack of this knowledge makes it difficult to understand the pathophysiology underlying hypokinetic/ akinetic-type gait disturbance in patients with Parkinson's disease (PD) and related disorders. Using singlephoton emission computed tomography (SPECT), we have demonstrated that gait disturbance is associated with hypofunction of supplementary motor areas (SMA) in PD (Hanakawa et al. Brain 1999) and in patients with ischemic white matter changes (Iseki et al. Neuroimage 2010). Activity in the lateral premotor cortex was negatively correlated with gait disturbance (Iseki et al. Neuroimage 2010). This premotor overactivity was consistent with our previous study in which the premotor cortex showed compensatory activity during paradoxical improvement of gait in PD (Hanakawa et al. Ann Neurol 1999). The roles of SMA and premotor cortex in gait control are also supported by brain activity during planning of gait. Namely, SMA and premotor cortex are active during mental imagery of gait, which is supposed to share mechanisms with planning of actual gait (Iseki et al. Neuroimage 2008). An analysis of diffusion tensor images (DTI) with tract-based spatial statistics indicated that patients with freezing of gait (FOG) had reduced integrity of the white matter beneath the premotor areas (Iseki et al., in preparation). These results consistently support the roles of SMA and premotor cortex underlying control of walking. Patients with PD show abnormal posture during standing, such as camptocormia. To clarify its pathophysiological mechanisms, we have started to investigate muscle activity in the abdominal and trunk muscles on a tilt table (Furusawa et al. 2nd Joint World Congress of ISPGR and Gait and Mental Function). We have found evidence indicating that abnormal muscle activity in the external oblique muscle of the abdomen may trigger the abnormal posture. It would be interesting to examine neural activity in the central nervous system responsible for this phenomenon. Future integration of basic neurophysiology, clinical, and imaging studies will advance the understanding of control mechanisms of gait, and enhance the understanding of pathophysiology of hypokinetic/akinetic gait and postural abnormality.

Symposium I: Monday June 24, 10:00 - 12:00, Hisho A

Advanced Technologies to Enhance Sensorimotor Integration in Postural Control

Chair: Joyce Fung, McGill University, Canada

A mixed reality system for sensorimotor rehabilitation

Joyce Fung, McGill University, Canada

BACKGROUND AND AIM: In the control of upright balance, the central nervous system has to generate task-specific and goal-directed motor responses based on the selective and rapid integration of sensory information from multiple sources. Loss of upright balance control resulting in falls occurs frequently post stroke. Postural imbalance may arise not only from motor or sensory impairments but also from the inability to select and reweight pertinent sensory information. Virtual reality (VR) technology provides the opportunity to manipulate sensory, perceptual and cognitive information to optimize motor learning. METHODS: A servo-controlled, selfpaced treadmill is mounted on a 6-degree-of-freedom motion platform to simulate sudden or gradual terrain changes. Subjects walk in a virtual environment (VE) that presents challenges related to physical (obstruction and surface angle), temporal (speed requirements to avoid collision with moving obstacles) and cognitive (attention, planning) domains. Subjects also walk with a leash in hand with haptic forces controlled in 3D by a robotic device (Haptic Master). Postural reactions and adaptations during walking are assessed by comparing body kinematics and centre of mass (CoM) trajectories between healthy and post stroke individuals. RESULTS: Persons with stroke generally have difficulty coordinating and stabilizing their body movements when they were first exposed to walking in the VE, as evidenced by their CoM excursions which show less coordination and lack the smooth multiphasic control observed in healthy subjects. However, postural adaptations occurred after repeated exposures and the improvements were retained by training. Increased forward haptic forces result in increased gait velocity and decreased COM excursions, indicating increased postural stability. CONCLUSIONS: A mixed reality system incorporating VR, surface perturbations and augmented haptic input can be utilized for balance and gait rehabilitation post stroke. Balance and gait stability can be improved with repeated practice and training with enhanced somatosensory inputs.

Using Virtual Reality for cross-modal adaptation of whole-body postural control

W. Geoffrey Wright, Temple University, USA

BACKGROUND AND AIM: Sensori- and visuo-motor adaptation has been shown in many forms over the last century. For example, VOR can be directionally recalibrated by prolonged pairing of optic flow with an inertial input that is different than would normally occur (i.e. cross-axis adaptation). Adaptation can also be induced when reaching while wearing prism goggles. After a short period of visually-guided reaching, endpoint errors disappear. But evidence of the visuo-motor adaptation can be seen by aftereffects; when the goggles are removed reaching errors occur in the opposite direction. These adaptations may also be retained over long periods of time, since repeated-exposure may induce fast context-specific adaptation that can be recalled quickly when goggles are donned again. The current study investigates adaptation to discordant visual-inertial input to determine 1) whether virtual environments (VE) can be used to induce whole-body postural adaptation, 2) what spatial and temporal characteristics of the stimulation may affect adaptation, and 3) whether adaptation can be retained. METHODS: Pilot testing (n=8) involved a 6 min period of adaptation during which subjects viewed a VE scene depicting 5m of sinusoidal A/P translation while standing on a surface translating sinusoidally along the M/L axis (left/right: ±10cm) with frequency matched to that of the VE scene (0.2 Hz). After adaptation, COP aftereffects were measured by removing sinusoidal M/L surface input, but continuing A/P sinusoidal optic flow. RESULTS: During adaptation, the A/P optic flow entrained COP in the A/P direction while M/L

Symposia Abstracts

COP became entrained with M/L sinusoidal surface motion. The postural response adapted to this combined motion during exposure, i.e. cross-modal adaptation, which was evident in the postural aftereffects. The axis of COP sway was ~45° between the A/P and M/L axes if subjects viewed only A/P optic flow without M/L surface input. A sine fit regression at the 0.2 Hz driving frequency showed a significant increase in sinusoidal M/L COP sway (p<0.05) and a significant increase in power spectral density at 0.2 Hz. Nonlinear analysis revealed highly significant differences between A/P and M/L COP pre- and post-adaptation (p<0.001). The aftereffect had largely decayed within a few minutes. CONCLUSIONS: After cross-modal adaptation, sensorimotor recalibration ensures postural stability is controlled in the new sensory environment. Nonlinear changes in COP complexity reflect CNS dynamics that drive the sensorimotor integration process to reduce error signals caused by discordant sensory stimuli. Our next experiment will use repeated exposure to cross-modal stimulation to determine if adaptation can be induced more quickly and retained for longer periods. If this experimental paradigm can be used to adapt the sensorimotor system towards a more optimal state, then this would be beneficial outside of the VE (e.g. in rehabilitation interventions).

Technology enhanced sensorimotor integration supports training of postural performance

Emily Keshner, Temple University, USA

BACKGROUND AND AIM: The human balance system relies on multimodal sensory inputs, and the integration of concurrent sensory information with expected sensory consequences. Conflict between sensory signals requires an ability to identify the mismatch, and select an appropriate response. A reduced ability to detect or compensate for this sensory conflict may contribute to the increased incidence of falls during multitasking. Adding noise to a biologic system has been shown to enhance the detection and transmission of weakened or sub-threshold cutaneous signals. It was hypothesized that augmenting proprioceptive information through vibrotactile stimuli would reduce the impact of a visual/vestibular mismatch on postural behavior. METHODS Sub-threshold vibration noise was applied at the soles of the feet in 21 healthy adults (20-29 yrs) standing quietly and performing a mental calculation task on a compliant surface. For both tasks, subjects viewed a virtual scene referenced to their head motion or rotated in upward pitch at 30 deg/sec. An ellipse fit to the covariance matrix revealed excursion of center of pressure (COP) and center of mass (COM) responses in frontal and sagittal planes. RMS values and approximate entropy of the COP and COM were calculated and statistically compared. A training paradigm used sub-threshold vibratory noise applied to the plantar surface of the feet can alter postural behaviors in 5 adults with stroke (39-67 yrs) standing in the dark on a sway referenced support surface. Before, immediately after, and two weeks following this training, postural responses of adults with stroke were assessed in a virtual environment. Pitch upward and downward rotations of the visual field were combined with the sway-referenced support surface. RMS and power spectral density of the COP was calculated. RESULTS: Postural sway was increased with both visual field rotations and mental calculation in a head referenced visual field. Adding mental calculation to visual field rotations, however, decreased postural sway. Adding vibration decreased the area of COM motion and increased regularity of both the COP and COM. COM and COP responses were larger during and after vibration suggesting that both the stabilizing effect of a head-referenced visual field and the destabilizing effect of visual rotation decreased with the administration of vibration. Immediately after and 2 weeks post-training, COP magnitude was decreased and frequency content of the response was more complex than prior to training. CONCLUSIONS: Results suggest that sub-threshold vibrotactile stimulation produced significant effects on the human balance system in environmental conditions that generated increased postural instability. The addition of vibrotactile stimulation modified the direction and regularity of the sway response supporting its use as an adjunct to interventions for impaired balance.

Functional near-infrared spectroscopy as an evaluation and possible training tool for postural control and balance

Masahito Mihara, Osaka University, Japan

BACKGROUND AND AIM: Postural control requires complex visuo-sensorimotor coordination, and previous animal studies have revealed that multiple CNS structures, including the spinal cord, brainstem, cerebellum, basal ganglia, and cerebral cortex, regulate the autonomic and voluntary control of posture and gait in a hierarchical manner. However, human bipedal posture and gait are unstable in nature, and presumably, the cortical contribution is much more important in humans than in guadruped animals. Functional near-infrared spectroscopy (NIRS) could enable us to measure cortical activation during dynamic movements, including gait and postural maintenance, and provide novel insight into the neural mechanism underlying gait and postural control in humans. METHODS: To investigate the cortical activation associated with the maintenance of upright posture in healthy subjects, we applied external postural perturbation by using combined brisk sliding of a platform for 4 cm. We also investigated the correlation between individual balance ability and regional cortical activation (cross-sectional study) as well as longitudinal cortical activation changes and correlation between balance recovery and cortical activation changes (longitudinal study) in post-stroke hemiplegic patients. RESULTS: In healthy subjects, both prefrontal cortices were activated on postural perturbation. A foregoing warning cue provided 2 s before perturbation could enhance the postural perturbation-related cortical activation in the supplementary motor area (SMA) and the posterior association cortex. In post-stroke patients, the SMA activity was correlated with individual balance ability and balance recovery after stroke. CONCLUSIONS: These results indicated that the SMA and posterior association cortex might play important roles in intentional postural maintenance in healthy subjects. Additionally, both cross-sectional and longitudinal study revealed that the SMA was one of the crucial cortical area for balance recovery after stroke. FUTURE DIRECTIONS: In addition to providing unique advantages as a neuroimaging tool for investigating neuronal mechanisms underlying balance and postural control, functional NIRS could be applied as a treatment tool for enhancing motor function or functional recovery. Recently, we have reported the potential usefulness of functional NIRS-mediated neurofeedback as a novel non-invasive neuromodulation technique. A combination of neurofeedback provided using a functional NIRS system and mental practice with motor imagery could enhance the motor imagery-related cortical activation and could augment the recovery of hand movement after hemiplegic stroke. Using similar neurofeedback techniques, we are trying to investigate the therapeutic effect of functional NIRSmediated neurofeedback on the balance and postural ability in healthy subjects and patients with neurological diseases.

Symposium II: Monday June 24, 10:00 - 12:00, Hisho B

Physical Activity Monitoring With Focus On Physical Behaviour

Chair: Jorunn L. Helbostad, Norwegian University of Science and Technology, Norway

Measurement of free-living physical behaviour by use of activity monitors has typically focused on intensity and energy expenditure and their relation to health variables. Another option is to describe physical behaviour in term of postures, transitions and activities that are actually performed, like lying, sitting, standing, walking and transitions between sitting and standing. Such events can be expressed as total time or numbers of events or patterns of activity. More knowledge about different outcomes of activity events can give insight to the role of patterns of daily physical behaviour on functioning in daily life. In the symposium a framework for measurement of physical behaviour by use of activity monitoring will be presented and discussed. Different methods to describe activity patterns will be presented in addition to data on physical behaviour patterns in healthy populations and elderly patient populations.

Event-based analysis of Physical Behaviour: Application in patients with Intermittent Claudication

Malcolm Granat, Caledonian University, Scotland

It has been shown that event-based analysis of physical activity and sedentary behaviour can provide a flexible and yet robust method of producing relevant outcome measures addressing specific clinical, or public health, research questions. The quantification of the patterning of these events can be considered as a direct measure of the physical behaviour of interest. This approach can be illustrated in patients with Intermittent Claudication who report they have to stop regularly whilst walking due to ischaemic pain. Event-based analysis of these walking events can produce clinically-relevant outcomes reflecting symptom severity and its impact on mobility and physical behaviour. These outcomes provide an objective patient-centred measure of disease severity and efficacy of intervention. This flexibility of this approach makes this technique applicable across a wide range of different research constructs.

Physical activity as a dynamical behaviour. - A new paradigm

Sebastien Chastin, Caledonian University, Scotland

Influencing behaviour to enabling and encouraging individuals to maintain and increase their physical activity is a major goal of rehabilitation and public health. This requires that we understand physical activity behaviour and how individuals construct their activity pattern. Currently physical activity is defined as movement leading to energy expenditure. Therefore, energy expenditure and total amount of activity are the principle measurands and outcomes studied and reported. Little attention has been paid to the analysis of patterns of physical activity are a direct reflection of behaviour and the human decision making process and how people are active; "when people decide to do what". Advances in technology, now enable us to track physical activity patterns over long periods and with great details. The availability of such intensive data logging different domains of physical behaviours will increase rapidly in the future. This is an opportunity to further understand physical activity, but it requires a change in paradigm and an alternative definition of physical activity as behaviour leading to movement and in turn energy expenditure should be adopted. Time series of recorded events enables us to analyse and study the dynamics and diversity of behaviour. We will present clinical examples that illustrate the benefits, technical and analytical challenges of a dynamical approach to the analysis of physical activity data.

Physical behaviour and function in older persons after hip fracture

Kristin Taraldsen, Norwegian University of Science and Technology, Norway

Each year 9000 persons experience a hip fracture in Norway. Hip fractures are associated with high morbidity and mortality, and few regain their pre-fracture function. Older adults with hip fractures represent a large group of older persons with mobility limitations. So far, the only available knowledge about physical activity comes from questionnaires. Because most physical activity in these frail older people is through low-intensity every-day life activities, more knowledge about physical behaviour in real life settings in daily life is needed. Knowledge about physical behaviour may help us understand more about factors contributing to explaining lack of return in pre-fracture function, as well as giving us more information about effects of different treatment approaches. Results from an RCT designed to assess the effect of a geriatric comprehensive assessment and intervention compared to treatment in an orthopaedic ward will be presented. Results on physical behaviour described as length of bouts of activity and activity pattern through the day will be presented. Data on physical behaviour will be compared to outcomes of physical function the 5th day after surgery, and 4 and 12 months after surgery.
The relationship of fatigue with patterns of daily physical behaviour among older adults

Thorlene Egerton, Norwegian University of Science and Technology, Norway

Fatigue is one of the most common reasons given by community-dwelling older people for activity restriction and is a frequently reported as a cause of disability. Not all fatigue among the elderly can be explained by the higher levels of co-morbidities and poly-pharmacy with increased age. Non-specific, self-reported fatigue may be related to an accelerated aging process. Fatigue may be the first sign to emerge of the frailty syndrome, and may therefore be present before the onset of consequent disability and morbidity. In contrast to persistent, non-specific feelings of fatigue, fatigue following physical or other types of activity is to some degree a normal experience. If, however, the level of fatigue experienced after activity relative to the amount of activity performed is exaggerated, it may also be disabling. Activity-related fatigue has been termed 'fatigability', and is a function of de-conditioning as well as the ageing process. Higher levels of both self-reported non-specific fatigue and fatigability may lead to changes in temporal characteristics of physical activity behaviours as well as total amounts of physical activity. Physical activity behaviour quantification can lead to a deeper understanding of problems and their consequences. Data will be presented on the associations between self-reported, non-specific fatigue and fatigability with temporal patterns of daily physical behaviour of 70-75 year olds.

Symposium III: Monday June 24, 10:00 - 12:00, Botan

Disturbances of posture, gait, and space orientation by vestibular dysfunction

Chair: Toshihisa Murofushi, Teikyo University School of Medicine, Mizonokuchi Hospital, Japan

We maintain our body balance by integrating vestibular, proprioceptive, and visual information in the central nervous system (CNS). Therefore, dysfunction of the vestibular system including CNS leads to disturbances of posture, gait and space orientation. In this symposium speakers present how peripheral and central vestibular dysfunction affects posture, gait, and space orientation from various viewpoints. Dr. Omi will talk about gait analysis using tactile sensor in vertigo and vestibulospinal tract disorders. His talk will include analyses of patients with central nervous system disorders as well as peripheral vestibular disorders. Dr. Fujimoto will talk about contribution of vestibular dysfunction to postural disorders in the elderly. In postural disorders of the elderly vestibular dysfunction plays an important role. He will talk about both aspects of diseases in the elderly and aging-related dysfunction. Dr, Young will talk about animal study of vestibular-evoked myogenic potentials. Vestibular evoked myogenic potential (VEMP) is one of useful clinical tests of the otolithic system. For better understanding of this test, animal experiments are important. I will talk about disorders of space orientation due to vestibular dysfunction, especially dysfunction of the otolithic organs, sensors of linear acceleration. Because the otolithic organs sense translation and tilt, dysfunction of these organs seems to lead to illusion of tilt and linear movement. I will present dysfunction of the otolithic organs could cause this type of illusion using VEMP. In our study patients with illusion in the roll plane showed tendency of abnormal responses in oVEMP testing, which is a test of the utricle. On the other hand, patients with illusion in the pitch plane showed tendency of abnormal responses in cVEMP testing. On the basis of our findings, I will propose a new clinical entity, idiopathic otolithic vertigo.

Gait Analysis using Tactile Sensor in Vertigo and Vestibulospinal Tract Disorders

E. Omi, Akita University, Japan

Background and aim: Normal gait can only be achieved by systematic integration of normal equilibrium function, space orientation and cognitive function. However, unilateral vestibular disorders such as vestibular neuritis and acoustic tumor, cause defect of space orientation and lead to abnormal gait. To understand, physiologically, how vestibular disorder might affect the stability of gait, normal individuals and patients with various types of vestibular lesion were studied by means of gait analysis using tactile sensors. Methods: 23 normal individuals, 14 vestibular neuritis patients, 61 acoustic tumor patients, 12 spino-cerebellar-degeneration (SCD) patients were enrolled and gait analysis using of tactile sensors installed under both feet were performed. Mean time length and coefficient of variation (CVs) of stance, swing and double support were analyzed as gait phase-related parameters. In addition, stability of foot pressure progression and trajectories of center of force were also be analyzed. Comparison of means were made using the two-tails t-test, with p<0.05 as the criterion for statistical significance. Results: Gait instability is depicted by increment of coefficient of variation of each gait phase. Visual cue plays an important role providing feed forward information for steady locomotion. Unilateral vestibular lesion could shift body center of gravity toward the lesion side, which leads greater foot pressure on the lesion side foot with greater horizontal sway of TCOF during gait, especially under gait with eyes closed. Irregular pattern of foot pressure progression could also reflect gait instability, and the greatest was found in SCD. As for the average length of TCOF, significantly longer trajectories were found especially when compared to vestibular neuritis. Conclusions: Vestibular inputs play an important role in the regulation of gait phase. However, gait is in some cases seemed to be normal despite of vestibular dysfunction due to the compensation by visual inputs. In conclusion, gait analysis by the use of foot pressure sensor could provide useful information for the understanding of gait abnormality caused by vestibular disorders. It is desirable to perform the gait test for evaluation of gait abnormality with vertigo patients.

Animal study of vestibular-evoked myogenic potentials

Y.H. Young, Taiwan University, Taiwan

Aim: The otolithic organs, utricle and saccule, respond to linear acceleration and gravity, serving as a functional role in maintaining postural stability. Recently emerging ocular and cervical vestibular evoked myogenic potential (oVEMP and cVEMP) tests expand the test battery for clinicians to assess the dynamic utricular and saccular functions, respectively. This study applied the oVEMP and cVEMP tests to guinea pigs coupled with morphological examination to study the pathophysiology of otolithic disorders in guinea pigs. Method: Ten healthy and 10 gentamicin-treated guinea pigs were enrolled. An amount of 0.05 mL of gentamicin (40 mg/mL) was directly dropped onto the round window membrane of the left ear. After two weeks, all animals underwent oVEMP and cVEMP tests. The oVEMP test was elicited via a hand-held bone-conducted vibrator placed on the animal's forehead at the stimulus intensity of 139 dB force level (FL). The cVEMP test was conducted using click stimuli (120dBSPL) generated by an earphone connected via a short tube inserted into the ear canal. Having finished the VEMP testing, all the animals were sacrificed for morphological study. Results: All 10 healthy guinea pigs exhibited clear oVEMPs, with the mean nl latency, pl latency and nl-pl amplitude of oVEMPs were 3.21±0.39 ms, 4.80±0.29 ms, and 67.3 ±47.8 iV, respectively. Similarly, all healthy animals showed clear cVEMPs, with the mean positive peak I latency, negative peak II latency, and amplitude I-II of cVEMPs of 6.41±0.78 ms, 7.42±0.52 ms, and 5.75±1.95iV, respectively. In contrast, none of the gentamicin-treated ears showed clear oVEMPs and cVEMPs. Morphological study of animals with absent oVEMPs and cVEMPs identified substantial damage to the utricular and saccular macula. Conclusion: The animal models of oVEMP and cVEMP in guinea pigs set the stage for studying the pathophysiology of otolithic disorders.

Contribution of vestibular dysfunction to postural disorders in the elderly.

Chisato Fujimoto, University of Tokyo, Japan

Posture in human beings is maintained by muscular actions under the control of the central nervous system. The processing of central nervous system organizes the information from vestibular, visual, and somatosensory inputs. Aging process declines in numerous sensory and motor functions and it is well known that postural stability decreases with age. In general, even though the peripheral vestibular function is damaged by vestibular disease, the prognosis of unsteadiness in the non-paroxysmal period is thought to be favorable when vestibular compensation is established. However, especially in the elderly, there are many cases that suffer from prolonged symptoms due to age-related changes associated with the postural control system, such as poor vestibular compensation and muscle weakness. Postural instability of the elderly with a vestibular dysfunction is considered to be influenced by not only functional impairment of the peripheral vestibular system due to vestibular disease but also age-related degenerative changes of the entire postural control system including the peripheral vestibular system.

The vestibular contribution to spatial orientation in virtual and real environments

Klaus Jahn, Ludwig-Maximilians-University of Munich, Germany

Patients with complete vestibular deafferentation (BVF) show a gait disorder characterized by worsening in darkness and on uneven ground, oscillopsia during walking, and a speed dependency with particular impairment at slow gait velocity (Schniepp et al. 2011). It is less well known, however, that they also exhibit spatial orientation deficits. Patients with BVF after bilateral neurectomy show deficits in virtual spatial orientation tasks and have a reduced hippocampal volume (Brandt et al. 2005). Recent experiments have shown that BVF patients are not able to use an internal map to find shortcuts in a complex real environment. The latter experiments have been combined with functional neuroimaging (FDG-PET) with tracer injection during the navigational task. Further, subjects carried a head-camera throughout the experiment to document their visual exploration behaviour. Results show that patients with BVF have a significantly higher metabolism of the posterior parahippocampus whereas controls activate the anterior hippocampus. Analysis of visual exploration behaviour indicated a landmark-based navigation strategy in BVF. We performed a meta-analysis on central sensory contributions to locomotion and navigation and found support for the hypothesis that visual and vestibular pathways are partly separated in the hippocampal formation (Hüfner et al. 2011). Vestibular functions involve the anterior part of the hippocampus and entorhinal cortex; visual functions the posterior part of the parahippocampal gyrus. In general, it can be assumed, that the lack of vestibular information in patients impairs the construction of a spatial cognitive map via head direction and place cells in the hippocampus, which is compensated by visually-guided parahippocampal navigation. Brandt T, Schautzer F, Hamilton DA, Brüning R, Markowitsch HJ, Kalla R, Darlington C, Smith P, Strupp M (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128: 2732-2741. Hüfner K, Strupp M, Smith P, Brandt T, Jahn K (2011) Spatial separation of visual and vestibular processing in the human hippocampal formation. Ann NY Acad Sci 1233: 177-186. Schniepp R, Wuehr M, Neuhaesser M, Kamenova M, Dimitriadis K, Klopstock T, Strupp M, Brandt T, Jahn K (2012) Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disorders 27: 125-131.

Symposia Abstracts

Symposium IV: Wednesday June 26, 10:00 - 12:00, Hisho A

Rehabilitation Update

Chair: Fay Horak, Oregon Health and Sciences University, USA

Chair: Prof. Futoshi Mori, Yamaguchi Unviersity, Japan

Locomotor Mobility following Traumatic Brain Injury

Bradford J. McFadyen, Laval University, Canada

Locomotor mobility (LM) involves the coordination of different aptitudes across cognitive, psychosocial and motor domains. A Traumatic Brain Injury (TBI), regardless of severity, often affects LM at the core of all of these domains. While gait and postural control research for acquired brain injuries such as Stroke has received great attention, TBI research is still in its relative infancy. Yet, all ABIs can benefit from a more systemic understanding of mobility. This talk will address what is understood about LM following TBI and provoke discussion about where it should go to aid diagnoses, prognostication and intervention.

Functional Electrical Stimulation for Restoration of Gait

Yoichi Shimada, Akita University School of Medicine, Japan

BACKGROUND AND AIM: Restoring independence in performing daily functions is the main goal in treating paralytic patients. Recent advances in computer technology has made it possible to control paralyzed muscles by electrical stimulation. We have used functional electrical stimulation (FES) to restore the paralyzed muscles in the upper and lower extremities since 1990. Here we descibe the clinical application of FES in paralytic patients and evaluate the clinical results.

METHODS: Paraplegia for spinal cord injury and hemiplegia for stroke were participated in this research. Two type of electrodes, percutaneous intramuscular electrodes and surface electrodes have been used for stimulation of motor points in paralyzed muscles.

RESULTS: The hybrid-FES using percutaneous intramuscular electrodes provide practical ambulation in paraplegics. Although all paraplegic patients could stand and walk with hybrid FES using percutaneous intramuscular electrods, the clinical results of maximum duration of continuous standing and maximum distance of continuous walking were shown with the hybrid-orthosis using in daily living. The hemiplegic patients with intramuscular electrodes or surface electrodes could walk easily rather than Ankle-Foot Orthosis only. New FES system using surface electrodes, Bioness H300, was mostly effective and practical for restoration of hemiplegic gait.

CONCLUSIONS: FES was useful for restoration of gait in paraplegic or hemiplegic patients. In particularly, Bioness H300 FES system was strongly recommended for clinical use.

Rehabilitation Update: Parkinson Disease

Gammon M. Earhart, Washington University, USA

BACKGROUND AND AIM: This presentation will discuss rehabilitation in Parkinson disease (PD), with an emphasis on treatment of postural instability and gait disorders. The aims of the presentation are to discuss current practices in the rehabilitation for PD, review recent research in the field and the implications of this work for the future, highlighting areas where additional research is needed.

METHODS: A multimedia presentation will be used to illustrate current and emerging evidence supporting various approaches to PD rehabilitation.

RESULTS: As the importance of physical activity and exercise in the management of PD becomes increasing apparent, new models of PD care that incorporate rehabilitation from the earliest stages of the disease are emerging. This presentation will review recent evidence supporting pharmacology, surgery and exercise in the context of multidisciplinary rehabilitation for individuals with PD.

CONCLUSIONS: Participants will come away with a broad overview of the current state of rehabilitation for PD, knowledge of recent developments in the field and recognition of areas where additional research is needed.

Vestibular PREHAB enhance recovery and long time postural performance after planned vestibular lesions.

Måns Magnusson, Lund University, Sweden

An acute vestibular loss results in tonic and dynamic vestibular symptoms with behavioural consequences. Over time these symptoms weaken by action of central nervous compensation, that can be speeded up by vestibular rehabilitation. A simultaneous or previous central nervous disease may however, delay or impede compensation. In planned lesions as in schwannoma suregery or in vestibular ablation in incapacitating Menieres disease, the lesion can be forseen and planned. By introducing pre treatment with vestibular training before the lesion and separating lesion and thus compensation in time from the surgical trauma compensation can be achieved before f ex suregery This process we have named vestibular PREHAB.

We wanted to investigate whether pre-surgical deafferentation would affect post-surgery postural control also in a long-term perspective (6 months). Tot that end 41 patients subjected to trans-labyrinthine schwannoma surgery were divided into 4 groups depending on the vestibular activity before surgery (with no clinical significant remaining function n=17; with remaining function n=8), whether signs of central lesions were present (n=10), and if patients with remaining vestibular activity were treated with gentamicin with the aim to produce uVD before surgery (n=6). The vibratory posturography recordings before surgery and at the follow-up 6 months after surgery were compared.

We found that the subjects pretreated with gentamicin had significantly less postural sway at the follow-up, both compared to the preoperative recordings and to the other groups.

By combined careful sensory training and separating the surgical trauma and the effects of uVD in time, can adaptive processes develop more efficiently to resolve sensory conflicts, not only resulting in a reduction of symptoms directly after surgery, but also persistent in the longer run and evident at least up to 6 month.

Symposium V: Wednesday June 26, 10:00 - 12:00, Hisho B

Visual dependency and balance control

Chair: Adolfo Bronstein, Imperial College London, England

From the point of view of controlling balance visual input is ambiguous as it can signal motion of the subject within the visual environment or motion of visual objects in relation to the subject. This ambiguity is partly resolved by inputs from inertial sensors such as the vestibular and proprioceptive systems. When signals from the inertial systems are unreliable, e.g. due to vestibular or proprioceptive lesions, subjects react excessively to motion of the visual surroundings. This has been documented with postural experiments with moving rooms or projected optic flow and psychophysically with the rod-and-disk test (which measures how much the subjective visual vertical is tilted by concurrent roll axis visual motion). Patients with vestibular disorders are highly sensitive to such visual stimuli but usually recover after the acute phase. However, some patients continue to exhibit enhanced responses to visual motion (so called enhanced visual dependency) and develop visually-induced dizziness (or visual vertigo; Guerraz et al; Brain 2001; 124:1646-56). Recent data will be presented showing that patients with migraineous vertigo have reduced adaptation to repeated visual motion stimulation, which may partly explain their dizzy symptoms (Agarwal et al; J Neurol 2012; 259: 1117-1124). Also, we will show that a laptop version of the rod-and-disk test to measure visual dependency in unselected vestibular neuritis patients can predict long term clinical outcome. Visual dependency is a maladaptive strategy which is detrimental to clinical recovery. Perceptual visuo-vestibular mechanisms, presumably cortical, participate in the long term recovery process after acute vestibular lesions.

The effects of fear and anxiety on human balance control

Mark Carpenter, University of British Columbia, Canada

Fear and anxiety are emotions that are commonly experienced by older adults and those with movement disorders. Strong associations between fear of falling and falls have been previously established, and a growing body of evidence supports a direct relationship between negative emotional state and postural control. Fear and anxiety have been manipulated experimentally through changes in environmental threat, changes in social context, or through the presentation of visual stimuli known to initiate negative emotional responses, in order to quantify the short term effects of emotional changes on postural control. Results indicate that fear and anxiety have significant but, in some cases, differential effects on postural control during static balance and dynamic responses to postural perturbations. Efforts to identify the potential mechanisms through which changes in emotional state may influence postural control have revealed both spinal and supra-spinal contributions, and changes in muscle spindle sensitivity and vestibular reflex gain. This presentation will review recent evidence in support of a causal effect of negative emotional state on human postural control, and the potential mechanisms that may mediate anxiety-related changes in balance performance.

A fully integrated model of threat assessment, vision, and postural control

Jeffrey Staab, Mayo Clinic, USA

BACKGROUND AND AIM: For more than 140 years, clinical observations, clinical research, and physiologic investigations have examined various aspects of the relationships among anxiety, attention, vision, posture, and gait. For the most part, these studies have conceptualized anxiety as a consequence of vestibular and gait disorders or as a disruptive influence on visuo-spatial processing and gait. This presentation argues that threat assessment is a fully integrated and indispensable component of spatial orientation and locomotor control at all times and in all situations in health and disease. METHODS: Studies investigating anxiety disorders and vestibular disorders; state anxiety, response to visuo-spatial stimuli and postural control; trait anxiety, resilience, and recovery after vestibular insults; and the neuroanatomy of threat, visuo-vestibular, and locomotor control systems in the brain were reviewed. RESULTS: In normal individuals and patients with visuo-vestibular deficits, balance problems, or anxiety disorders, the tendency to be more or less reactive to motion stimuli and perceived postural threat drives locomotor control strategies, conscious attention to gait and posture, clinical symptoms, and functional impairment. CONCLUSIONS: Threat assessment is an inherent element of spatial orientation and locomotion. Anxiety is not a separate cause or consequence of posture and gait problems. Models that fully integrate threat assessment into locomotor control are needed to advance physiologic studies, clinical research, and patient care.

Symposium VI: Wednesday June 26, 10:00 -12:00, Botan

Predicting disease: Is gait a useful biomarker?

Chair: Jeffrey Hausdorff, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Israel

Lynn Rochester, Newcastle University, England

Gait is emerging as a sensitive tool to discriminate incipient pathology with increasing evidence for its role as a biomarker of healthy ageing and disease. Evidence however is largely from studies in the oldest old. Evidence to support the sensitivity of gait to detect early pathology at the prodromal stage and as a tool to discriminate pathology and aid diagnosis is still accumulating, as are the optimal set of gait characteristics and testing protocols. This symposium aims to explore the evidence with respect to the following: Is it possible to detect prodromal disease with gait; do gait characteristics discriminate pathology; do dual task protocols and increased speed add value for discrimination and prediction?

Predicting Disease: Is Gait A Useful Biomarker?

Anat Mirelman, Tel-Aviv Sourasky Medical Center, Israel

Gait disturbances play a major role in the motor manifestation of many neurodegenerative diseases. Alterations in the gait pattern frequently observed include decreased gait speed, decreased stride length, increased stride-to-stride variability and decreased arm swing. These changes are already apparent in recently diagnosed patients. However, neurodegenerative diseases are known for their long pre-diagnosis phase. Disturbances in smell, sleep, autonomic functions and affect have been reported long before motor changes appear. As such, it is likely that sub-clinical gait alterations are also present in the pre-diagnostic, prodromal phase of neurodegeneration. However, uncovering these changes is challenging as it requires the use of sensitive measures in populations at risk. The objective of this talk is to provide evidence of subtle gait alterations in asymptomatic healthy first degree relatives of patients with Parkinson's disease who are carriers of the G2019S mutation in the LRRK2 gene, subjects who have a heightened risk of developed the disease. In addition, we will explore other motor function abnormalities in populations at risk of neurodegenerative diseases and discuss possible compensatory mechanisms that might mask motor changes in the prodromal phase of disease.

Gait as an early marker of pathology and clinical outcomes: A cross pathology approach

Brook Galna, Newcastle University, UK

BACKGROUND: Subtle gait deficits in the early stages of disease can provide important information about the mechanisms by which different pathologies impact on functional mobility, and can help identify those at greater risk of both motor and non-motor decline. METHODS: This presentation will focus on the commonalities and differences between three distinct pathologies (Parkinson's disease, Spinocerebellar ataxia and Mitochondrial disease) across a range of gait characteristics. RESULTS: By examining how gait differs within and between the three pathologies as well as controls, we show that discrete measures of gait: i) are sensitive to

Symposia Abstracts

subtle changes of motor function in the earliest stages of Parkinson's disease and in pre-clinical Spinocerebellar ataxia; ii) can discriminate between specific genotypes of mitochondrial disease and controls, even in patients who present with phenotypically normal gait on clinical observation; and iii) are sensitive to individual pathological mechanisms, manifesting as distinct patterns across the five domains of gait for each pathology. Finally, we show that gait deficit in early pathology is predictive of deleterious health outcomes, such as falls and cognitive decline. CONCLUSIONS: Gait should be considered a sensitive tool to help us draw inferences about underlying mechanisms of pathology, provide a clinically relevant outcome to assess the effectiveness of interventions and monitor disease progression, and potentially identify patients most at need of early intervention.

The role and value of dual task balance and gait tests for fall prediction in older people

Stephen Lord, University of NSW, Australia

Dual or secondary task paradigms have been used to explore the attentional requirements of balance control. The premise is that when two tasks are performed simultaneously that require more than the total information processing capacity of a person, performance on either or both tasks deteriorates. Studies have shown that the attention required for balance control increases with the increased complexity of the balance task, the more complex nature of the cognitive task, increased age and reduced balance abilities.

Dual task paradigms have also been included in fall risk factor studies conducted in older people. Some of these studies have demonstrated that dual task cost (i.e. the difference in balance abilities with and without a secondary task) is a significant risk factor for falls. There is conflicting evidence however, as to whether the addition of a secondary cognitive task to a balance or gait test aids in fall prediction over and above balance and gait tasks undertaken under standard conditions. This presentation will summarise findings of studies that have used dual task paradigms in fall risk factor studies undertaken in older people and clinical groups such as those with Parkinson's disease and cognitive impairment. Findings from a systematic review and meta-analysis of the comparative value of gait speed conducted under simple and dual task conditions will also be presented.

Symposium VII: Wednesday June 26, 13:15 - 15:00, Hisho A

What startles can tell us about posture and gait control

Chair: Vivian Weerdesteyn, Radboud University Medical Centre, The Netherlands

Startling contributions to seated postural responses and audio-spinal reflex pathways in postural control

Tim Inglis, University of British Columbia, Canada

The presentation of a loud startling acoustic stimulus has previously been shown to trigger very rapid but accurate movement responses during reaction time paradigms. The first part of this presentation will review this "StartReact" effect, which has been extensively investigated during simple voluntary limb movements. Secondly, experimental evidence suggests that exaggerated neck muscle responses to transient perturbations consists of combined postural and startle components, and hints at a contribution of startle to the aetiology of whiplash-like injuries. Finally, very recent research has been investigating the contribution of startle stimuli to audio-spinal reflexes. Repeated presentation of loud stimuli, given to the so-called habituated CNS, demonstrate significant but persistent reflexive responses in postural muscles, and these responses may provide a means for investigating the integrity of these descending brainstem pathway contributions that could be involved in postural control.

Startle and Gait

Jacques Duysens, KU Leuven, Belgium

The startle response is a very basic reaction while gait is a basic motor act. When combined these two activities are not always compatible. How is this resolved? It is argued that the nervous system is usually able to integrate startle responses smoothly by modulating the responses in different phases of the gait. This is seen both in normal subjects and in Parkinson patients, but the latter show less habituation. Startle is also able to facilitate gait initiation and obstacle avoidance (start-react). Furthermore it is argued that startle-like responses are much more common than often assumed. Usually startle is related to auditory stimulation but it is also seen with other forms of sensory input, in particular due to somatosensory stimulation (such as following mechanical perturbation or electrical nerve stimulation). In fact, the transition between startle and non-startle is not easily determined, thereby leading to underestimation of the role of startle circuitry.

StartReact effects on dynamic postural control

Mark Carpenter, University of British Columbia, Canada

StartReact involves the involuntary, speeded release of a prepared motor response following the presentation of a startling stimulus. Although commonly used with voluntary movements, recent studies have combined StartReact paradigms with cued and uncued balance perturbations to gain new insight into the way in which dynamic balance responses are prepared and influenced by prior experience. StartReact has also proven effective in identifying the potentially startling characteristics of balance perturbations themselves, and the extent to which they may contribute to first trial effects.

Motor control deficits in CNS diseases - insights from startles

Vivian Weerdesteyn, Radboud University Medical Centre, The Netherlands

When an imperative signal to start moving is combined with a startling auditory stimulus (SAS), reaction times are greatly accelerated. This so-called StartReact effect has not only been demonstrated for simple ballistic movements of the arm, but also for more complex movements, such as gait initiation, obstacle avoidance and sit-to-stance. The shortening of reaction times is hypothesized to be caused by the SAS directly accessing a pre-prepared motor program 'stored' in the brainstem reticular formation (Valls-Sole et al., 2008). It may thus give potential insight into the role of brainstem structures in deficient motor control due to central neurological disorders.

In Parkinson's Disease (PD), difficulties with initiating stepping or gait are common. Deficits in planning and preparation of the preceding anticipatory postural adjustments have been suggested to contribute to these difficulties. Hence, one may expect an impaired StartReact effect on APA latency shortening in PD patients when a cue to start walking is combined with a SAS. Two recent studies, however, demonstrated intact SAS-induced acceleration of the APA, but these were underscaled in magnitude (Rogers et al., 2011; Fernandez-delOlmo et al., 2012). Interestingly, in PD patients with severe freezing of gait an absent StartReact effect has recently been reported for a simple ballistic arm movement, which effect could be restored by pedunculopon-tine nucleus stimulation (Thevathasan et al., 2011). This exciting observation may help unravel the yet poorly understood pathophysiology of freezing. In patients with corticospinal lesions (e.g. stroke), the cortico-reticulospinal pathway has been proposed as a possible bypass circuit to maintain voluntary motor control, yet at the cost of the commonly observed loss of independent joint control (Ellis et al., 2012). The first results from StartReact experiments indeed provide evidence for a potent reticulospinal drive to both upper and lower extremity muscles in patients with corticospinal lesions. Optimization of the functional exploitation of such a bypass circuit may be an emerging target for future rehabilitation treatment of these patients.

Symposium VIII: Wednesday June 26, 13:15 - 15:00, Hisho B **Body and mind interactions in pain and postural control**

Chair: Paul Hodges, The University Of Queensland, Australia

BACKGROUND AND AIMS: Although early theories proposed that changes in motor behaviour in pain rely on mechanisms at the spinal cord or lower levels of the nervous system, recent work highlights more complex adaptations with evidence of changes at the highest levels of the nervous system. These include changes in the motor and sensory regions of the brain's cortex and an association with cognitive aspects of pain. Of particular interest, these changes have been identified in association with motor behaviours underlying postural control, which are generally controlled subconsciously. Using a range of experimental paradigms this work has aimed to investigate the relationship between postural motor behaviour in people with low back pain (LBP) and: (i) changes in brain organisation, and (ii) beliefs and attitudes about pain. METHODS: This series of studies involved investigation of people with recurring episodes of LBP and healthy control participants. Outcome measures included: temporal and spatial features of activation of the trunk muscles as a component of the anticipatory postural adjustment associated with rapid limb movements; spatial maps of the motor cortex evaluated with transcranial magnetic stimulation; somatosensory evoked potentials; measures of coordination of movement of the lumbar spine and pelvis; and estimation of mechanical properties of the trunk in response to a small mechanical perturbation. RESULTS: Mapping of the motor cortex has revealed a number of key observations;

(i) Areas of the motor cortex with inputs to trunk muscles are not affected uniformly by acute LBP. Excitability of inputs to muscles that stiffen the trunk is enhanced, whereas inputs to the deeper muscles have reduced excitability; (ii) Cortical representation of deep abdominal muscles is shifted posterolaterally, and the amount of shift is linearly correlated with the temporal delay in activation of these muscles in people with LBP; (iii) Although healthy individuals have two main areas of representation of paraspinal muscles on the motor cortex, this is reduced to one in people with recurring LBP. There is preliminary evidence that this "simplification" of the cortical representation is related to changes in motor behaviour such as the ability to coordinate movement of the lumbar spine and pelvis.

Studies investigating the psychosocial domain have identified that although beliefs and attitudes related to pain are associated with how a person reacts to a painful stimulus they do not appear to explain variance in mechanical properties of the trunk.

CONCLUSION: These studies provide strong evidence for involvement the brain and mind in the adaptation of postural motor behaviour in LBP. The results provide evidence that treatment strategies to optimise motor behaviour are likely to require careful attention to the coordination of muscle activity (rather than generalised changes in activation) and attention to psychosocial features of the LBP experience.

Low Back Pain and Trunk Postural Control

Jaap van Dieen, VU University, The Netherlands

BACKGROUND AND AIM: Postural control of the trunk appears to be affected by low back pain (LBP), which is often attributed to impaired lumbar proprioception. However, reports on effects of LBP on trunk sway in sitting and standing, as well as on the underlying muscle activity in these conditions, are quite inconsistent. In this presentation, I aim to describe a model of trunk postural control that can qualitatively explain these inconsistencies and that may provide guidance for more controlled experimentation. METHODS: An overview of studies on trunk postural control will be given. RESULTS: Maintenance of static trunk posture relies on a combination of intrinsic stiffness of the osteoligamentous spine and cocontracting musculature and feedback control. In recent experiments, we demonstrated that visual, vestibular, tactile and proprioceptive information

each play a role in the feedback control of trunk posture and demonstrated interactions between these sensory modalities. Moreover, interactions between environmental and task conditions and the use of sensory modalities for feedback control of trunk posture were found. These interactions cause differential effects of LBP on trunk postural control when environmental and task conditions are varied. For example, differences between cases and controls and patients are less pronounced in unstable than rigid surface conditions, which may be explained by the smaller role of lumbar proprioceptive information when sitting on an unstable surface, While the above suggests that sensory manipulations and support conditions used in different studies could account for differences in effects of LBP on postural sway between studies, this was not confirmed in a systematic review. Based on the review results, we hypothesized that differences between studies could also arise from competing effects of nociception and fear of pain on trunk postural control. While nociception may disturb proprioceptive feedback and hence cause decreased control over trunk posture, fear of pain or pain-related arousal may lead to increased cocontraction, which may enhance postural control. Data from two recent, large cohort studies provide support for the latter in subjects with LBP, with reduced or similar sway, changes in sway frequency and reduced effects of manipulations of lumbar proprioceptive information compared to healthy subjects, consistent with a 'stiffening strategy'. CONCLUSION; The data presented illustrate that nociception, pain-related cognitions, sensory manipulations, and environmental and task constraints have interacting effects on trunk postural control, which should be taken into account when interpreting and designing studies on LBP and postural control.

Sensory-motor interactions in experimental pain and postural control

Rogerio Hirata, Aalborg University, Denmark

BACKGROUND AND AIM: Pain has strong correlation with self-reported falls in elderly, where the knee is one of the joints most affected by pain in this population. However, the postural instability in this population may also be affected by other factors than pain such as loss of muscle strength and joint flexibility. This presentation aims to bring a series of recent research showing the effects of experimental pain models in healthy subjects. Such models allow unique findings by isolating the effect of pain in different muscles in relation to control and baseline conditions in healthy young subjects with no other impairments. METHODS: Injections of hypertonic saline were applied to the calf muscles, leg muscles (close to the knee joint) and infrapatellar fat pad. The subjects were asked to either keep their balance as quiet as possible for one minute or recover their upright posture as fast as possible after an external or internal perturbation. Force platforms were used to measure the center of pressure excursions (COP). Bipolar surface EMG electrodes were used bilaterally to estimate muscle activation in relevant postural muscles. Kinematic data from the lower limb segments was acquired to quantify the angular position, displacement and velocity. During the conditions with internal perturbations (fast voluntary movements), anticipatory postural adjustments (APAs) were quantified. RESULTS: The results suggest that when compared with pain free conditions, pain in the lower limb decreases postural stability, increasing postural sway and altering muscular activation during guiet standing and when reacting to external perturbation. When the balance was perturbed internally, pain altered the APAs when compared with pain free conditions. CONCLUSIONS: The changes in muscle activity due to pain were not similar between subjects, indicating that a complex sensory-motor mechanism drives postural adaptations during pain. Additionally, the muscular strategies adopted during pain were not optimal for stabilizing balance, which may partly explain the strong correlation between pain and self-reported falls in elderly individuals. Hence, clinical approaches to reduce pain may lead to improvements in balance especially for elderly people reporting pain.

Effects of low back pain on lumber movement and contingent negative variation

Katsuo Fujiwara, Kanazawa University, Japan

BACKGROUND AND AIM: Sit-to-stand movement is distinguished into the following 4 phases: 1) the anterior displacement of the center of gravity of the trunk by forward inclination of the pelvis, 2) the lift of the buttocks by upward displacement of the pelvis, 3) the transform to standing posture by the extension of the knee and hip joints, and 4) the stabilizing standing posture. It is reported that in people with low back pain (LBP), the movement speed of the greater trochanter is transiently delayed from 2) to 3). However, there is little investigation about the movement of lumber lordosis in sit-to-stand movement. For people with LBP, the movement of lumber lordosis would be decreased in order to fix the lumber region. Furthermore, they would be careful to do the sit-to-stand movement, and therefore prepare for directing attention early and strongly to the movement. The investigation of these characteristics would provide the viewpoints that the issues related to the sit-to-stand movement in people with impairment of postural control could be demonstrated including the control property by central nervous system. For the elderly subjects, we investigated the effects of LBP on lumber movement and contingent negative variation (CNV). METHODS: Subjects were 22 community-dwelling and healthy elderly women aged 60-79 years. The number of subjects with and without LBP (no LBP) was 12 and 10, respectively. Based on the subjective assessment of the pain, the subjects with LBP were classified as 2 groups (mild LBP (N=6) and moderate LBP (N=6)). Two force platforms, one for the seat and the other for floor, were used to measure the center of pressure in the anteroposterior direction (CoPap) and vertical force (Fz) during the sit-to-stand movement. Reflective marker was placed from Th12 to S1. Recording electrodes for electroencephalogram (EEG) were affixed to the scalp at Cz, in accordance with the international 10-20 system. Movement task was the sit-to-stand in the S1-S2 paradigm. S1 and S2 were auditory stimuli with a 2-s interval. In response to S2, subjects stood up toward their quiet standing position. They were instructed to respond to S2 as guickly as possible and to stand up at a comfortable speed. This trial was repeated until 20 EEG waveforms without any artifact were averaged. Movement onset time to S2, movement angle of lumber, and CNV peak latency and amplitude were analyzed. RESULTS: Movement onset time was 241 ± 61 ms in no LBP, 198 ± 35 ms in mild LBP, and 290 \pm 60 ms in moderate LBP. The onset time in moderate LBP was significantly later than mild LBP (p < 0.05). Inter-trial variation of the onset time tended to be larger in moderate LBP, but no significant group difference was found. Lumber lords is angle before the movement start did not significantly differ among groups. Moderate LBP tended to once flex the lumber region (i.e. rebound action) about 500 ms after the sit-to-stand movement onset, and then start forward inclination of the pelvis. Lumber movement angle tended to be smaller in moderate LBP than the other groups (no LBP: 9.2 ± 4.7 , mild LBP: 9.1 ± 4.2 and moderate LBP: 5.6 \pm 1.5). CNV peak latency was -421 \pm 281 ms in no LBP, -448 \pm 334 ms in mild LBP, and -893 \pm 168 ms in moderate LBP. The latency was significantly longer in moderate LBP than the other groups. CNV peak amplitude tended to be smaller in moderate LBP, with no group difference (Fig.1). CONCLUSION: These results suggest that in the sit-to-stand movement, the elderly with moderate LBP would early direct their attention toward upcoming movement to comparatively fix their lumber.

Authors and Presenters

All authors (lead and additional) and presenters are listed here for easy cross-referencing to their respective abstract. The list of full abstracts is available as a download from the ISPGR website (www.ispgr.org).

Interpreting the presentation numbers:

The first section of the number represents the type of presentation as follows:

- **O** Oral presentation
- **S** Symposium presentation
- P1 Poster Session 1 YELLOW
- P2 Poster Session 2 GREEN
- **P3** Poster Session 3 PINK
- P4 Poster Session 4 BLUE

All poster boards are colour coded with card, as indicated above.

The second section represents the session number for Oral and Symposium presentations or the subject theme for posters.

The third section indicates the order of presentation for Oral and Symposium presentations or Poster number.

Oral, Symposia and Poster presenters are indicated with a bold Presentation Number.

Author	Presentation Number	Author	Presentation Number
Aaslund, M	P4-A-2	Anan, M	P1-E-115
Abroskina, M	P2-P-261, P3-P-260,	Anastasopoulos, D	0.10.2
	P3-P-262	Ando, H	P3-N-226, P4-A-10
Abubakar, H	P1-A-11	Antunes, A	0.1.4
Aga, Y	P2-M-207	Anzai, E	P4-A-30
Agid, Y	0.7.3	Aoki, O	P1-D-103, P4-A-10
Ahmad, R	P1-A-11	Aoki, M	0.18.4
Ahn, S	P3-T-300, P4-A-26	Aoyama, T	P1-A-41
Akbarifar, R	P4-A-36	Arendt-Nielsen, L	P4-E-118
Akçay, E	P3-0-244, P3-0-250	Armour Smith, J	P2-N-229
Akira, O	P3-R-280	Aruin, A	0.1.3
Akram, S	P3-L-172	Asai, T	P2-N-225, P3-N-226
Albin, R	0.4.4, P2-M-185,	Ashburn, A	0.7.4
	P4-A-40	Assal, F	P3-M-186
Alexandrov, A	P2-0-253	Assayag, E	P1-A-21
Alkan, O	P4-A-36	Asslaender, L	0.17.3
Amar, K	0.7.4	Auriel, E	0.4.1

Amimoto, K

P4-D-104

Poster Themes:

- A Tools and methods for posture and gait analysis; Cognitive impairments
- **B** Sensorimotor control
- C Exercise and physical activity
- **D** Vestibular function and disorders
- **E** Orthopedic diseases and injuries
- **F** Aging
- **G** Aging; Coordination of posture and gait
- H Coordination of posture and gait
- Learning, plasticity and compensation
- J Activity Monitoring; Aging
- **K** Balance support device; Exercise and physical activity
- L Falls and falls prevention; Aging
- M Neurological diseases; Aging
- **N** Cognitive, attentional and emotional influences
- **O** Modeling, robotics and biomechanics and implantable neuroprosthesis
- **P** Habilitation and rehabilitation; Cognitive, attentional and emotional influences
- **Q** Cognitive impairments; Aging
- **R** Development of posture and gait; Coordination of posture and gait
- **S** Effect of medication on posture and gait; Falls and falls prevention
- T Ergonomics; Aging
- **U** Psychiatric disorders; Vestibular function and disorders

Author	Presentation Number	Author	Presentation Number	
Authié, C	0.15.4, P1-B-61, P3-O-	Barton, J	P2-L-183	
	240, P4-B-72	Bastlova, P	P2-M-199	
Auvinet, B	P3-M-192	Baten, C	0.8.3, P1-A-17	
Azaman, A	P3-R-286	Becker, C	P3-L-158	
Bahat, Y	P4-H-128	Beek, P	0.14.1	
Baker, C	P3-Q-278	Begg, R	0.13.3	
Balaam, M	0.6.4	Belaich, H	P2-L-179	
Balasubramanian,	P2-L-159, P4-A-16	Bendik Wik, P	0.6.1	
C		Bennequin, D	0.15.4, P1-B-61, P3-	
Baltzopolous, B	P3-N-218		0-240	
Bandinelli, S	0.12.4	Bennett, D	P2-Q-275	
Baptista, T	P2-N-221	Bent, L	0.18.2, P1-B-51	
Bardinet, E	0.7.3	Bentzen, H	P3-Q-274	
Barela, A	P2-R-287	Berg, D	0.9.3, P2-M-205, P3-L-	
Barela, J	0.10.1, P2-R-287		158, P3-Q-276	
Bar-Haim, S	0.17.2, P2-P-257	Bergland, A	P2-Q-277, P3-Q-274	
Barr, C	P3-L-180, P4-C-76	Bergsma, A	P1-A-17	
Barry, G	0.6.4	Bernad-Elazari, H	0.16.2, 0.3.3	

Poster Index

Author	Presentation Number	Author	Presentation Number	Author	Presentation Number	Author	Presentation Number
Berryman, N	P2-N-217	Chang, Y	P3-L-154	De Lima-Pardini, A	P2-N-219	Falotico, E	P1-B-61, P3-0-238
Berthoz, A	K.O, 0.15.4 , P1-B-61,	Chastan, N	0.7.3	de Niet, M	P3-M-188	Fang, J	P3-L-164
	P3-0-238, P3-0-240,	Chastin, S	S.2	De Swart, B	P2-M-195	Fernandez Vidal, S	0.7.3, P2-L-179
Past D	P4-D-72	Chen Yeh, Y	P4-E-114	de zeeuw, j	P1-A-17	Ferrari, A	P3-M-202
Desi, K	U.15.5	Chen, S	P1-C-79, P1-C-89	Debevec, T	P1-C-75	Ferrufino, L	P1-A-27, P3-0-242
Bezalel, P	P4-L-84	Chen, T	P3-L-156, P4-G-124	Decramer, M	P4-B-50	Fitton, C	0.7.4
Bhatt, I	0.10.4, P2-L-16/,	Chen, C	P2-0-243	Delafond, A	P3-M-192	Fitzpatrick, R	P4-D-108
Dhavay I	P3-L-100	Chen, H	P1-A-15	Delbaere, K	0.7.1, P2-L-169, P3-	Fitzpatrick, R C	0.18.2
Direrer, L	PZ-N-Z1/	Chen, P	P3-0-252		L-170	Fleming, M	P3-M-196
Diggan, J	P1-C-01	Chen, S	P1-K-149, P4-E-114	Delmaire, C	0.7.3	Fling, B	0.3.1
Blanchet, S	P3-N-218	Chen, S	P1-E-109	Demain, A	0.7.3 , P2-L-179, P2-	Fonteyn, E	P3-M-206
Bliddal, H	P4-E-118	Chen, Y	P1-K-149, P4-E-114		S-293	Forczek, W	P2-R-281
Bloem, B	5.9, 0.4.3, PZ-M-195, DD M DO2 D2 M 199	Chen, Y	P2-0-243	Den Boer, J	P3-M-206	Foucher, C	P3-M-192
Ploomborg I	P2-IVI-203, P3-IVI-100	Chen, Y	P1-C-79, P1-C-89	Denomme, L	P3-M-212	François, C	P2-S-293
bioomberg, J	PT-A-TS, PT-D-95, PA_D_0A	Chen, Z	P1-H-127	Denton, A	0.9.4	Frank, J	P1-I-139, P3-L-172
Rogen R	D4-A-D	Chern, J	P1-E-109	Deo, K	P1-C-81	Frank, N	P1-H-129
Bohnon N	0 4 4 D2 M 195	Chiari, L	0.12.4, P1-A-29, P2-S-	Deshpande, N	0.15.1, P1-B-57,	Fransson, P	P2-L-171, P2-P-273
Donnen, N	0.4.4, F2-W-165, P4-A-40		295, P3-M-202, P4-A-38		P4-B-58	Fraser, S	P2-N-217
Bonneville F	073	CHIDORI, K	P4-G-126	Desjardins-	P2-N-217	Freedman, T	0.13.1, 0.12.2, P4-A-4
Bornstein N	P1-A-21	Chien, C	0.16.3	Crepeau, L	D2 M 201	Freek, N	0.13.2
Boulton H	P3-N-216	Chien, H	P4-A-42	Desioovere, K	P2-M-201	Freitas, P	0.10.1
Bouver I	P1-I-135	Chiu, H	P1-C-89	Deuschi, G	P4-C-90	Frey, K	0.4.4, P2-M-185,
Bradley B	P2_M_209	Chiu, S	0.5.2	DI GIUIIO, I	0.15.2		P4-A-40
Braandvik S	P3_P_26/	Cho, H	P4-A-24	Diamond, N	P2-R-289	Frolov, A	P2-0-253
Brandt T	0510181 P1_D_	Choi, H	P3-N-232	Dichgans, M	0.5.1	Fuchi, M	P2-L-181
Dialiut, I	101 P2-R-279	Choi, S	P4-A-24	Dierckxsens, S	P4-B-66	Fuchioka, S	P3-0-248
Brauer S	0.9.2 P4-F-112 P2-	Chou, L	0.5.2, 0.12.1P3-L-156,	Dietrich, G	P1-A-27, P2-R-283,	Fuji, H	P4-D-98
biddel, b	N-215		P3-L-174, P4-G-124	Distanish M	P3-0-242	Fujibayashi, S	P1-A-41
Bril, B	P1-A-27, P2-R-283 ,	Chung, C	P4-C-88	Dieterich, M	K.2, U.5. I	Fujimoto, M	0.12.1, P3-L-174
	P3-0-242	Chvatal, S	P4-H-130	Ding, J Diagona de	PI-A-15	Fujimoto, C	S.3, P4-A-48
Brockmann, K	P2-M-205, P3-Q-276	Cinar, O	P3-0-244	Diligenen, b	P2 D 267	Fujio, K	P1-B-69
Brodaty, H	0.7.1, P3-L-170	Cinelli, M	P1-I-139, P3-M-212,	Doprusnina, U	P2-P-20/	Fujita, N	P4-K-150
Brodie, M	P2-N-231		P3-Q-278	Dockx, K	P4-D-30	Fujiwara, K	
Brodsky, M	P2-M-189	Claassen, J	0.13.2	Donerty, N	PZ-N-223	Fujiwara, K	0.11.1, P2-P-269,
Bronstein, A	S.5, 0.5.4, 0.6.2,	Claeys, K	P4-B-50	D0I, I	PZ-L-101, PZ-N-225, D2 N 226		P3-L-152
	0.10.2, P2-P-263	Clark, R	P4-E-112	Domen K	P1_D_103	Fukasawa, M	P1-B-53
Brozgol, M	0.2.4, 0.3.3, 0.12.2,	Close, J	0.7.1, P3-L-170	Donoghuo 0	0.5.2	Fukudome, S	P2-U-301, P3-U-302
	P3-N-224, P3-Q-272,	Coelho, D	P2-N-219, P2-N-221	Donoyan S	0.5.5 P7_M_180	Fukuzawa, S	P1-A-31
	P4-C-80	Cofré Lizama, L	P4-A-20	Dorfman, M	PA-C-80 PA-C-84	Funabiki, K	P1-A-43, P4-A-8
Brozova, H	P3-M-190	Cohen, R	0.3.1, P3-M-194, P3-	Dormont D	0.7.2	Funaya, H	P1-A-47
Bruijn, S	0.7.2, P2-M-201		M-196	Downs L	0.7.3 D7 D 790	Fung, J	S.1, P2-0-251
Bruin, S	P3-M-200	Colpo, M	0.12.4	Driikoningon D	D1_R_71	Fürst Ihlen, E	P1-A-23
Brumagne, S	P1-B-49, P4-B-50	Commins, S	P3-N-220	Duddo R	PI A 12	Furusawa, Y	P3-M-204
Buchman, A	P2-Q-275	Compton, E	P2-M-209	Duque, n	D D 202	Gadareh, K	P2-P-263
Bugnariu, N	P3-R-290	Contin, M	P2-S-295	Dupuy, L Ducok P	P2-N-200	Gaenslen, A	P3-Q-276
Bunn, L	0.9.4, P3-R-292	Corbetta, D	P2-R-283	Dusek, r	C 7 0 7 2 0 10 2 D1 P	Gaeta, A	P3-M-198
Bürger, K	0.5.1, P2-Q-271	Cormier-Dequaire,	P2-L-179	Duysells, J	71 P2-I-157 P2-M-201	Gage, W	P1-E-117
Burn, D	0.9.1, 0.14.4, P4-J-144	F			P2-M-203, P4-B-66	Gagey, P	P4-A-12
Burtin, C	P4-B-50	Coubard, U	P1-A-2/, P3-L-184	Earhart, G	0.3.2. P2-M-211	Galna, B	S.6, 0.6.4, 0.14.4,
Buurke, J	P2-S-297	Creath, R	P2-L-183	Egami, N	P4-A-48		P4-J-144
Cameron, M	P3-L-178	Cronin, H	0.5.3	Egerton, T	\$ 2. 0.6.1 . P1-G-123	Gandevia, S	P3-L-178
Campbell, M	P2-M-211	Crossley, K	P4-E-112	Fl Helou, A	P2-S-293, P4-I-138	Gao, C	P1-E-109
Carlson-Kuhta, P	P2-M-189	Crotty, M	r3-L-180, P4-L-76	Elders, P	P4-J-142	Garver, C	P3-R-290
Carpenter, M	S.5, S.7	Cukjati, I	PI-C-/5	Emond, H	P3-M-186	Gasymly, E	P2-P-261
Cattabriga, A	P1-A-29	Cuong Do, M	0.7.3	Endo, T	P4-C-78	Gazit, E	0.3.3 , 0.12.2, P4-A-4
Celestino, M	P2-R-287	Curzon-Jones, B	P2-L-163	Engedal K	P2-0-277 P3-0-274	Geipel, A	0.11.2
Chang, C	P2-T-299, P3-L-154	Daffertshofer, A	0.14.1	Engels	P3-M-206	Geurts, A	0.4.3, 0.11.4, P2-M-195,
Chang, C	P2-T-299 , P3-L-154	Darekar, A	P2-0-251	Fom G	034 P1-F-119		P3-M-188
Chang, Y	P4-E-110	Dario, P	P1-B-61, P3-0-238,	Eschweiler G	0.9.3 P3-0-776	Giladi, N	0.1.1, 0.2.4, 0.3.3,
Chang, C	P2-T-299	Davi D	r4-b-/2	Esselink R	P2-M-195		0.4.1, 0.4.2, 0.12.2,
Chang, C	P4-A-42	Day, B	U. 15.2, U. 1.4, P4-D-108	Evenczyk (P2-S-293		U.13.1, U.16.2, PT-A-21,
Chang, W	P2-T-299	de Bot, S	r3-M-188	Enclickyn, C	. 2 . 2 . 2		r 2-Q-2/3, P3-N-224,

Author	Presentation Number	Author	Presentation Number	Author	Presentation Number	Author	Presentation Number
	P3-0-272, P4-A-4, P4-A-	Hendler, T	0.4.2	Hung, W	P3-P-268	Jiang, L	0.16.1
	34, P4-C-84	Henriksen, M	P4-E-118	Huppert, D	P2-R-279	Joa. M	P3-L-172
Gilles, M	P3-T-298	Herman, T	0.1.1, 0.2.4, 0.4.2,	Hurteau, M	P4-B-70	Johannsen, L	0.11.2
Gimmon, Y	P4-H-128		0.12.2, P3-N-224, P3-Q-	Huth, S	0.18.1	Jonkers, I	P1-B-71
Ginis, P	P1-A-39, P2-P-265,		272, P4-A-4, P4-A-34,	Hye Shin, S	P4-K-146	Jor'dan, A	P1-I-137
	P3-M-202		P4-C-80	Hylen-Ranhoff, A	P3-Q-274	Jørgensen, T	P4-E-118
Glover, P	0.1.4	Herman-Feinstein, T	0.4.1	Ibara, T	P1-E-115	Josinski, H	0.8.4, P1-A-5
Godau, J	0.9.3, P3-L-158	Hermsdörfer, J	0.11.2	Ibavashi, S	P2-L-181	Jun Seol, S	P4-A-24
Godfrey, A	P4-J-144	Hesseberg, K	P3-Q-274	Ichihashi, N	P1-E-111	Jurutkova, Z	P2-M-199
Goihl, T	0.1.2, P3-P-264	Hettich, G	0.17.3, P2-0-253	lchikawa, M	P1-F-121 , P4-F-120	Kaba, H	P1-B-59
Gómez-Alvarez, F	P1-D-97	Hewston, P	P4-B-58	lda, H	0.1.3	Kabaya, K	P4-D-106
Goossens, N	P1-B-49, P4-B-50	Higuchi, T	P1-B-63, P2-N-233,	lfukube, T	P4-A-30	Kagawa, T	P2-0-239
Gorce, P	P1-A-37		P3-L-176, P3-P-254,	Ihara, H	P1-H-131, P1-H-133	Kagawa, K	P4-A-22
Goto, Y	P1-E-111	11: 1 · V	P3-P-256	Ihlen, E	0.1.2, 0.8.2, P1-A-23	Kahlon, B	P2-P-273
Goussev, V	P2-0-251	Higuchi, Y	P3-0-248	limura, N	P3-N-234	Kako, M	P2-L-151
Grabli, D	P2-L-179, P2-S-293	Hill, K	P2-M-193	lkeda, Y	P2-N-227, P3-N-228,	Kamada, S	P2-M-197
Graci, V	P1-C-91, P2-L-183	Hilt, P	0.15.4		P3-R-288	Kamakra, T	P4-I-136
Granat, M	S.2, P1-J-141	Hiragami, S	P3-K-284 , P4-A-22	lkeda, T	P4-D-98	Kampangkaew, J	P1-D-95
Graven-Nielsen, T	P4-E-118	Hirata, K	5.8, P4-E-118	lkemiyagi, F	P1-A-1, P1-D-105	Kanazawa, Y	P3-L-152
Gresty, M	0.5.4	Hirata, S	P3-K-288, P2-K-291	lkemiyagi, Y	P1-D-105	Kanbayashi, T	P3-S-294
Gschwind, M	P3-M-186	Hirata, S	P3-N-226	lmai, T	P4-I-136	Kang, B	P4-A-24
Guélin, J	P3-T-298	Hirayama, A	P4-A-6	lmanaka, K	P3-P-256	Kang, C	P1-C-79
Guo, L	0.16.3	Hiroi, S	P1-B-6/	Inagaki, T	0.18.3, P1-D-107,	Karachi, C	P2-L-179, P2-S-293
Gurevich, T	0.4.1	Hiroshi, M	P3-R-280		P4-D-102	Karita, T	P2-P-259
Gurses, S	P4-A-36, P3-0-244,	Hiroshi, I	P3-R-280	Inglis, T	S.7	Karlberg, M	P2-P-273
	P3-0-250	Hirota, I	P4-A-10	Ino, S	P4-A-30	Kasahara, S	P1-B-73, P4-I-140
Gutierrez-Marquez,	P1-D-97	Hirschauer, F	0.11.2	Inohara, H	P4-I-136	Kaski, D	0.5.4
A		H0, J	P2-0-243	Inoue, Y	P4-A-22	Kato, J	P4-A-10
Hackney, A	P1-I-139	Hoang, P	P3-L-1/8	Inoue, Y	P4-A-10	Kawami, S	P3-L-160
Hackney, M	0.17.4	Hobert, M	0.9.3, P2-M-205,	Isableu, B	P1-A-37	Kawasaki, T	P1-C-85, P3-P-254
Hafstrom, A	P2-L-171		P3-L-130, P3-Q-270, P3-S-296	Ishida, Y	P2-U-301, P3-U-302	Kawasaki, T	P1-C-85
Hagiwara, N	P2-L-181	Hodaes P	S 8 P4-H-134	lshikawa, K	P4-A-46	Kawashima, N	Р1-Н-131
Haishi, K	P2-N-227	Hokkirigawa K	P1-A-31	Itasaka, Y	P4-A-46	Kawashima, N	P1-B-69, P1-C-77, P1-H-
Hallevi, H	P1-A-21	Hollands M	0 15 3 P2-L-155 P2-L-	Itaya, A	P4-C-78		133, P4-B-54, P4-F-122
Hanakawa, I	P3-M-204	nonunus, m	163, P3-L-166	lto, K	0.18.4, P1-A-35	Kaygorodceva, S	P3-P-260
Hanazono, A	P2-M-19/	Honarvar, H	P1-A-33, P4-A-32	lto, J	P1-A-43, P4-A-8	Kazuhiro, I	P3-P-258
Hansen, C	P1-A-37	Honarvar, M	P1-A-33, P4-A-32	lto, K	P4-C-86	Kemp, J	P4-E-112
Harada, H	P3-L-152	Hong, S	P2-M-213	lto, T	P4-K-150	Kenny, R	0.5.3
Harada, N	P1-G-125	Honoré, J	P2-M-187	lto, Y	P4-B-60	Kergoat, M	P2-N-217
Harada, I	P4-B-60	Hoogkamer, W	0.10.3, P4-B-66	Ivanenko, Y	P2-R-281	Keshner, E	S.1
Harada, K	P4-A-22	Horak, F	S.4, 0.3.1, P2-M-189,	lwakami, Y	P4-A-30	Keus, S	P1-A-39, P2-P-265
Harris, C	P3-R-292		P3-M-194, P3-M-196,	lwami, T	P1-K-147, P3-M-208	Khare, K	P1-H-129
Hashiba, K	P4-A-6		P4-A-38	lwasaki, S	P4-A-48	Kikuchi, M	P3-L-152
Hasnigucni, Y	P2-M-207	Horii, A	P4-I-136	lwata, A	P3-0-248	Killane, I	0.5.3
Hashimoto, K	P1-B-61, P3-U-238	Hoskovcova, M	P3-M-190	lwata, H	P3-N-234, P4-B-52	Kim, C	P4-H-132
Hashimoto, M	P4-D-98	Hosobuchi, T	P2-R-291	lwata, Y	P3-M-204	Kim, J	P4-A-24,
Hasmann, S	0.9.3, P2-M-205,	Hosoda, T	P1-C-77, P4-F-122	Izeki, M	P1-A-41	Kim, J	P4-A-26
Hatanaka V	F3-L-130	Hosoi, H	P4-K-150	Izumi, S	P3-M-210, P4-A-6	Kim, J	0.3.4, P1-F-119
Malallaka, 1	P1-A-33, F2-0-243, P2-P-269 P4-C-86	Hough, A	0.9.4	Jaak, D	P4-B-62	Kim, M	P4-A-24, P4-H-132
Hatton A	PA-F-117	Hsiao, C	P1-E-113	Jackson, D	0.6.4	Kim, S	0.17.1 , P2-0-247, P2-
Hausdorff I	KAS6011024	Hsu, H	P1-K-149, P4-E-114	Jacob, Y	0.4.1, 0.4.2, 0.16.2		0-249, P3-T-300
nausuoni, s	033.041. 0.4.2 .	Hsu, W	0.12.1, P1-A-15, P1-E-	Jahn, K	S.3, 0.5.1, 0.18.1, P1-	Kim, K	P4-H-132
	0.12.2, 0.13.1, 0.13.2,		113, P3-P-266		D-101, P2-Q-271	Kim, K	P4-K-146
	0.16.2,	Hu, K	P3-L-164	Jansen, K	P1-B-71	Kim, T	P4-A-24
	P1-A-21, P2-Q-275,	Huang, C	P1-C-83, P2-N-237,	Janssens, L	P1-B-49, P4-B-50	Kim, Y	P2-0-247, P2-0-249,
	P3-N-224, P3-Q-272,		P2-Q-273	Janssens, W	P4-B-50		P3-T-300, P4-A-26
	P4-A-4, P4-A-34, P4-C-	Huang, H	0.13.4, P3-P-268	Jauregui-Renaud, K	P1-D-97	Kimiyosi, T	P3-P-258
	80, P4-C-84	Hui-Chan, C	0.10.4	Jech, R	P3-M-190	Kinase, Y	P3-N-214
Heeren, A	P3-M-206	Hullegie, W	0.8.3	Jeffery, R	P2-M-209	Kingma, I	0.12.3
Helbostad, J	0.1.2, 0.6.1, 0.16.1 , P1-	Hun Lee, D	P4-A-24	Jeng, J	P2-M-213	Kishimoto, I	P3-L-152
	A-3, P1-D-99, P4-A-44, P1-G-123, P1-J-141	Hung, S	0.13.4	Jeong, H	P4-K-146	Kitagawa, M	P1-A-35

Poster Index

A	December 1	A	December New Leve	A	Duran testing Northeast	A., 41,	Descented and New Leve
Author	Presentation Number	Author	Presentation Number	Author	Presentation Number	Autnor	Presentation Number
Kitagawa, I	P4-B-60	Lee, A	P1-C-81	Malfalt, B	P4-B-56, P4-E-116	Mizoguchi, H	0.2.2
Kitagawa, Y	P1-A-35	Lee, H	0.16.3	Mancini, M	P2-M-189, P3-M-194,	Mizuta, K	0.18.4
Kitahara, I	P4-I-136	Lee, P	0.6.2, P2-P-263		P3-M-196, P4-A-38	Moe-Nilssen, R	P4-A-2, P4-A-44
Kitajima, Y	P2-R-291	Lee, K	P4-A-24	Manji, A	P4-D-104	Mohammadi, F	P3-M-200
Kitamura, T	P4-B-54, P4-B-68	Lee, M	0.17.1	Manor, B	P1-I-137, P3-L-164,	Mohapatra, S	0.1.3
Kitatani, R	P2-M-207	Lee, P	P2-P-263		P3-N-236	Molenaar, E	P1-A-39, P2-P-265
Kito, N	P1-B-65, P1-E-115,	Lehr, L	P2-N-217	Mao, H	P2-M-213	Mori, F	0.16.4, P2-P-259
	P4-B-64	Lesch, M	P2-T-299	Marazzato, L	P4-B-72	Morioka, S	P1-B-67, P2-N-235,
Kiyomizu, K	P2-U-301, P3-U-302	Levin, O	P1-B-71	Marsden, J	0.9.4, P2-M-209,		P3-L-160
Kizuka, T	P4-C-78	Li, K	P2-N-217	A	P3-K-292	Moromochi, O	P4-D-104
Klein, K	P3-M-194, P3-M-196	Li, C	P1-E-109	Martinelli, A	P2-N-221	Morris, S	P2-R-289
Klenk, J	P3-L-158	Li, J	0.13.4, P2-L-173	Masanı, K	P4-A-28, P1-A-31,	Morris, M	0.9.2, P2-N-215
Kliper, E	P1-A-21	Li, S	P4-E-110		P4-K-148	Mortensen, S	P4-E-118
Kobayashi, Y	P2-R-285	Li, Y	0.1.4	Massaad, F	PI-B-/I	Mucha, R	0.8.4, P1-A-5
Kobayashi, M	P1-E-111	Liang, J	P1-C-83, P3-P-268	Masugi, Y	P4-B-54, P4-B-68	Mukai, Y	P3-M-204
Koh, G	P4-D-96	Liew HX, S	0.2.3	Matsuda, K	P2-U-301, P3-U-302	Mulavara, A	P1-A-13, P1-D-95,
Kohlbecher, S	0.5.1	Lim, B	P4-H-132	Matsuda, M	P2-M-197		P4-D-94
Koizuka, I	P1-B-53	Lim, H	P1-B-55	Matsunaga, I	P1-K-147, P3-M-208	Muller, M	0.4.4, P2-M-185,
Koizumi, K	P4-A-46	Lin, B	P1-D-93	Matsunaga, M	P1-A-43, P4-A-8		P4-A-40
Kojima, Y	P1-C-85	Lin, F	P1-K-149, P4-E-114	Matsuura, A	P2-P-259	Muller, T	0.15.2
Kokubun, M	P2-N-227, P2-R-291,	Lin, K	P1-A-15, P3-P-266	Maylor, E	P2-N-223	Münks, L	P1-A-39, P2-P-265
	P3-R-288	Lin. C	P1-D-93	McCombe Waller, S	P3-M-198	Munneke, M	P1-A-39, P2-P-265
Kolarova, B	P2-M-199	Lin. H	P1-K-149, P4-F-114	McConnell, A	P1-B-49, P4-B-50	Murai, T	P4-K-150
Koller, J	P2-M-211	Lindhera I	P2-P-273	McConville, K	P4-K-148	Murakami, M	P4-A-10
Kondo, K	P1-A-9	Ling P	P4-I-142	McFadyen, B	S.4, P2-0-251, P3-N-	Murakami, S	P4-D-106
Kondo, T	P4-D-102	Lips, i	P3_1_16/		218, P4-B-62	Muraoka, Y	P4-A-6
Kondo, Y	P2-P-259	Liu-Ambrose T	P3-L-167	McKay, J	0.17.4	Murata, M	P3-M-204
Kong, S	P4-A-24		D2 N 221	McLoughlin, J	P3-L-180, P4-C-76	Murofushi, T	S.3
Konomi, U	P4-D-102	Lo, W	0 13 / D1 U 127	McNaney, R	0.6.4	Muroi, D	P1-B-63
Koonsiripiboon, S	P2-P-255	Lo, W	D2 C 20E	Megumi, K	P3-P-258	Mussi, C	P1-A-29
Korczyn, A	P1-A-21	Lopane, G	PZ-3-293	Mekjavic, I	P1-C-75	Nagai, K	P1-A-41
Kota, T	P2-I-161	LUIU, S	0.3.1, F4-J-144	Mellone, S	P1-A-29, P2-S-295,	Nagata, H	P2-L-153
Kouda, Y	P3-N-230	Lora, S. K.	5.0, U.7.1, P2-L-109, P2-N-231 P3-L-170 P3-		P4-A-38	Nagata, K	P3-L-182
Kouichi, S	P3-P-258		L-178, P3-L-180	Menant, J	P2-N-231	Naito, H	P3-0-248
Krafczyk S	P1-D-101	Lou S	P2-0-243	Mengshoel, A	P2-Q-277	Naito, Y	P3-L-152
Krohot A	P2-M-199	Lu T	0.13.4 P1-H-127	Mensink, S	P2-M-203	Nakajima, K	0.16.4, P4-A-30
Krüger R	P3-S-296	Lu, 1	P2-L-173, P2-M-213,	Mergner, T	0.17.3, P2-0-253	Nakajima, Y	P3-N-228
Kudo S	P7-P-769		P3-P-266, P4-A-42	Meunier, S	P4-I-138	Nakakubo, S	P2-N-225
Kudo, S	P3_S_794	Lui, G	0.15.1	Meyer, R	P4-A-38	Nakamata, T	P1-A-35, P2-0-245,
Kualer G	0.5.1 P2_R_270	Lung, C	P1-E-109	Meyer, S	0.9.3, P3-Q-276	, .	P4-C-86
Kugo M	P1_C_85	Lussier, M	P2-N-217	Meyns, P	P1-B-71, P2-M-201	Nakamura, T	P2-U-301, P3-U-302
Kugo, M	P I K 1/9	Lvadov, K	P2-P-267	Mhiripiri, D	0.6.4, 0.9.1	Nakano, H	P2-N-235, P3-L-160
Kulpers, M	D2 N 220	Lysens, R	P1-B-49	Michalczuk, A	0.8.4	Nakashima, M	P4-A-32, P1-A-33
Kung, K	P4 D 06	Lytney, V	P2-P-261, P3-P-260,	Mihara, M	S.1	Nakaso, N	P2-P-259
Kunasaigaran, G	P4-D-90	2) (1) (1)	P3-P-262	Mian, O	0.1.4	Nakavama, M	P2-U-301, P3-U-302,
Kuo, L	P3-0-232	Mackey, D	P3-L-162	Mike, A	P1-A-21	,,,	P4-D-106
Kurdinalsu, r	P3-M-210	Maechtel, M	P2-M-205	Milosevic, M	P4-K-148	Nakazawa, M	P1-J-143
kuriyama, s	P4-D-106	Maede, T	P3-L-182	Minh Vu, T	P2-N-217	Nakazawa, K	0.11.3. P1-A-7. P1-B-69.
Kuze, B	0.18.4	Maegawa, R	P1-A-35, P4-C-86	Mirelman, A	S.6, 0.3.3, 0.12.2,		P3-R-282, P4-B-54,
Kwon, I	P4-K-146	Maegawa, S	P1-C-85		0.13.1, 0.13.2, 0.16.2,		P4-B-68
Kwon, Y	0.3.4, PI-F-119	Maetzler, W	0.9.3. P2-M-205		P2-Q-275,	Nakazawa, M	P3-0-246
La Fougere, C	0.5.1, P2-Q-2/1	macterer, m	P3-L-158, P3-0-276,	P1-A-21, P3-N-224,		Nanri, H	P2-L-181
Lai, C	P1-C-79, P1-C-89		P3-S-296	P3-Q-272, P4-A-4,		Naruse, T	P2-P-269
Lai, D	0.13.3, P1-H-127	Magaji, R	P1-A-11	P4-C-80, P4-C-84		Neder, V	P4-H-128
Lai, M	P1-C-89	Maganaris, C	P3-N-218	Misu, S	P2-N-225	Nederhand, M	P2-S-297
Lake, J	0.18.2	Magder, L	P3-M-198	Mitoma, H	P2-L-177	Negishi, M	P4-D-102
Lamont, R	0.9.2, P2-N-215	Magnusson, M	P2-L-171, P2-P-270	Mitra, S	P2-N-223, P3-N-216,	Nene, A	P2-S-297
Lamontagne, A	P2-0-251	Mahendran. N	P1-J-145		P3-N-222	Neo, M	P1-A-41
Lamoth, C	0.14.2, 0.14.3	Maidan, I	0.3.3.0.13.1.0.13.2.	Mitsugami, I	P1-A-19, P1-J-143	Neumann, H	P4-A-14
Laschi, C	P1-B-61, P3-O-238, P3-		0.16.2P4-A-4	Miyamoto, K	P1-B-59, P1-B-67	N'Guven, S	0.15.4
	0-240, P4-B-72	Maje, A	P1-A-11	Miyamoto, S	P1-B-67	Niebler, R	0.9.3, P3-0-276
Lau, B	P2-S-293	Mak, M	0.6.3	Miyamoto, Y	P1-B-53	Niessen, M	P4-A-18
						successivity in	

Author	Presentation Number	Author	Presentation Number	Author	Presentation Number	Author	Presentation Number
Nieuwboer, A	P1-A-39, P2-P-265,	Otaka, Y	P1-A-9	Rietman, H	P2-S-297	Seemungle, B	0.6.2
	P3-M-200, P3-M-202,	Otani, Y	P1-D-103, P4-A-10	Riphagen, I	P1-A-3	Shamala, T	P4-C-88
N: 1 (5	P4-B-56	Otsuka, K	0.18.3, P1-D-107, P4-	Rispens, S	0.14.1, P4-J-142	Shapovalenko, T	P2-P-267
Nieuwnot, F	0.10.2		D-102	Röben, B	P3-L-158	Shema, S	P3-N-224, P3-Q-272,
Nijnuis, L	0.4.3, P3-M-188	Otsuka, N	P1-E-111	Roberts, H	0.7.4		P4-C-80, P4-C-84
Nishiguchi, S	P1-A-41	Ouaknine, M	P4-A-12	Robinovitch, S	K.3, P3-L-162	Shen, X	0.6.3
NISTIIKE, S	P4-I-130	Oude Nijhuis, L	P2-M-203	Robins, R	0.15.3	Shenhar-Isarfaty, S	P1-A-21
NISTIJO, H	PI-A-45	Oyake, K	P1-A-9	Rocchi, L	P3-M-202	Shibata, I	P1-A-47
NISNIWAKI, I	P1-F-121, P4-F-120	Ozgören, K	P3-0-250	Roche, R	P3-N-220	Shih, K	P4-A-42
Nishiyama, N	PI-D-10/	Page, R	P4-A-16	Rochester, L	S.6, 0.6.4, 0.9.1, 0.14.4	Shiina, T	0.2.2
Nomura, Y	P1-A-13	Palmerini, L	P1-A-29	Roelofs, J	0.11.4	Shimada, Y	P1-K-147, P3-M-208
Nomura, M	P3-M-196	Palumbo, P	012.4	Rochester, L	P4-J-144	Shimizu, H	P2-L-181
Nonaka, I	P1-A-27, P3-K-284	Panya, S	P1-C-87	Rogers, M	P2-L-183, P3-M-198	Shimizu, K	P4-A-8
Nonnekes, J	0.4.3, P2-M-203, P3- M 199	Pao, J	P1-E-113	Rosenberg-Katz, K	0.4.1, 0.4.2	Shimizu, N	P4-K-150
Norwang 0	M-100	Pardini, A	P2-N-221	Roth, J	P3-M-190	Shimizu, T	P3-S-294
Norvally, U	0.0.1, FI-0-123	Pardo, G	P1-H-129	Roth, S	P2-Q-273	Shindo, S	P3-S-294
NOVAK, V	0 11 2 02 1 100	Park, S	0.3.4, 0.17.1, P1-B-55 ,	Rousseaux, M	P2-M-187	Shinkoda, K	P1-E-115
NUZAKI, IVI	0.11.3, P3-L-100		P3-N-232	Roy, P	P2-N-217	Shinohara, S	P3-L-152
NULL, J	0.5.1, P5-IN-194, P/LA_38	Pascual-Leone, A	P3-N-236	Rusz, J	P3-M-190	Shinya, M	0.11.3
Nutt 1	P3_M_196	Patel, M	0.5.4, P2-L-1/1	Ruzcika, E	P3-M-190	Shioya, T	P3-S-294
Oba N	P1_A_7 P3_R_787	Patel, P	P2-L-16/, P3-L-168	Ryouta, M	P3-P-258	Sho, N	P2-L-161
Obara A	0 2 2	Patritti, B	P4-C-76	Ryuichi, S	P2-L-161	Shogo, M	P2-L-161
Obata H	0.2.2 P1_R_60	Patterson, R	P3-R-290	Sachdev, P	0.7.1, P3-L-170	Shopin, L	P1-A-21
Opdensard M	0 16 1	Paulig, L	P3-S-296	Sæther, R	P1-A-3	Shoujaku, H	P1-A-45
Offord 1	0.10.1	Pavlou, M	0.6.2	Saito, H	P4-I-140	Shum, G	P2-M-209
	D1_A_10	Pearce, R	0.10.2	Saito, K	P4-C-86	Sidyakina, I	P2-P-267
Ogawa, T Ogawa, Y	0.2.1.0.18.3 P1.D.	Pearson, K	K.1	Saito, K	P1-K-147	Silva, M	P2-N-219, P2-N-221
Ogawa, T	107. P4-D-102	Peng, C	P1-C-79, P1-C-89	Saito, R	P3-N-228	Siu, K	P2-N-237, P2-Q-273
Ogawa, T	P4-B-54	Peolsson, A	P4-C-92	Saito, A	P3-S-294	Skirton, H	P3-R-292
Ogava S	P3-0-248	Perlmutter, J	P2-M-211	Saito, H	P1-B-73	Skjaeret, N	0.8.2
Oghamicael S	P2-M-205	Peters, B	P1-D-95, P4-D-94	Saito, H	P4-A-6	Sletvold, O	0.1.2, 0.16.1, P1-J-141,
Ogihara, N	P2-I-175, P2-0-241	Peterson, D	0.3.2, P2-M-211	Saito, K	P1-A-35, P2-0-245	6	P4-A-44
Ohata, K	P2-M-207	Phonrod, P	0.8.1	Saito, K	P3-M-208	Sloot, L	0.12.3
Ohkawa, S	P2-M-197	Pichaiyongwongdee, S	P2-L-165	Saj, A	P2-M-187, P3-M-186	Smith, S	P2-L-169
Ohnishi, H	P2-M-197	Pickett, K	0.3.2, P2-M-211	Sakamoto, T	P3-M-204	Smulders, K	P2-M-195
Ohta, Y	P4-A-30	Pijnappels, M	0.12.3, 0.14.1, P2-L-	Sakuma, K	P2-M-207	Smulders, E	P2-L-15/
Ohzaki. C	P1-C-85		137, F4-A-10, F4-A-20, P4-I-147	Salsich, G	P1-C-91	Snijders, A	P2-M-203
Okabe, T	P1-B-67	Piinenhura M	P1-R-49 P4-R-50	Saltvedt, I	P1-J-141	Snopkov, Р	P2-P-26/
Okada, T	P1-B-53	Plotnik M	P4-H-178	Samukawa, M	P1-B-73	Snyder, A	P2-M-211
Okada, K	P3-S-294	Po-Liang L	P1-F-109	Sangi-Haghpeykar,	P1-D-95, P4-D-94	Son, J Grieven englisere la sel	P2-0-247, P2-0-249
Okada, S	P1-G-125	Pona D	P3-R-290	H		Srisupornkornkool,	P3-N-222
Okada, T	P1-B-53	Ponovic M	P4-K-148	Saracino, D	P2-L-159	N Stulijos K	P2-M-205
Okamoto, H	P4-K-150	Postema K	0.14.2 0.14.3	Sasagawa, S	P1-A-7, P3-R-282	Studijes, K	C 5
Okazaki, S	P4-I-136	Potocanac 7	P2-I-157 P4-B-66	Sasaki, M	P3-S-294	Stadu, J Stack E	0.7.4
Okochi, M	P4-D-104	Prentice, S	P1-H-129	Satake, M	P3-S-294	Stadler W	0.11.2
Oku, T	P2-L-175	Prinsen, F	P2-S-297	Sato, Y	P4-B-52	Stace F	0.11.2 P/I_F_116
Okuma, Y	P2-L-177	Prokopenko, S	P2-P-261, P3-P-260,	Sato, K	P1-E-111	Stanley I	P3-1-166
Okuzumi, H	P2-N-227, P2-R-291,	1101000011110/0	P3-P-262	Sato, S	P2-U-301, P3-U-302	Stamey, J	P1_A_5
,	P3-R-288	Raethjen, J	P4-C-90	Sato, I	P2-P-269	Stegenga I	014 2 0 14 3
Olde Rikkert , M	0.13.2	Ramos-Toledo, V	P1-D-97	Sato, Y	P3-N-234, P4-B-52	Stoecklein I	0.14.2, 0.14.3 Ρ/ι_Δ_16
Olivier, P	0.6.4	Ranhoff, A	P4-A-2	Satoh, Y	P3-L-182	Street R	P1_F_117
Omi, E	S.3, P4-A-46	Ray, C	P1-C-81	Saunders, S	P4-H-134	Strouwen (P1.A.30 P2.P.265
Ondar, V	P2-P-261, P3-P-262	Raymaekers, J	P1-B-49, P4-B-50	Savva, G	0.5.3	Strzalkowski N	P1-R-51
Ono, R	P2-N-225	Razuk, M	0.10.1	Sawa, R	P2-N-225	Sturnieks D	0 18 7 P2_N_231
Onodera, H	P1-A-31, P4-A-28	Reelick, M	0.13.2, 0.16.2	Sawada, I	P1-B-65, P4-B-64	Jumiers, D	P3-L-180
O-Phartkaruna, T	P2-L-165	Rei, O	P2-L-161	Sawai, Y	P4-K-150	Su Y	P3-0-252
Osada, Y	P2-L-181	Reilly, R B	0.5.3	Schlenstedt, C	P4-C-90	Subramanium, S	0.10.4
Osternig, L	0.5.2	Rezzoug, N	P1-A-37	Schneider, E	U.5.1, P2-K-2/9	Sudo, E	P3-0-246
Osumi, M	P2-N-235	Ricci, N	P1-D-95	Schniepp, R	0.18.1, P1-D-101	Sugawara M	P2-M-197
Osumi, M	P3-L-160	Richard, A	P4-I-138	Schoberl, F	U.5.1, P2-Q-271	Sunami, K	P3-N-230
Ota, M	P2-L-181	Riddle, K	P2-L-183	Schoene, D	P2-L-169	Suzuki, K	P1-F-115

Poster Index

Author	Procentation Number	Author	Procentation Number	Author	Procentation Number	Author	Presentation Number
Suzuki M	0 18 3 P4-D-102	Tomite T	P3-M-208	Vik T		Yamaguchi T	
Juzuki, m	P1-D-107	Tona R	P3-L-152	Viveros-Rentería I	P1-D-97	Yamakami N	P2-M-207
Suzuki, M	P1-A-1, P1-D-105	Tono T	P2-II-301 P3-II-302	Vlasova V	P3-P-262	Yamamoto A	P1-A-7 P3-R-282
Suzuki, Y	P3-R-284	Torihara, K	P2-U-301, P3-U-302	Vrabec, J	P1-D-95	Yamamoto, M	P1-A-1
Swinnen, S	0.7.2, 0.10.3, P4-B-66	Torii. H	P1-A-43, P4-A-8	Vuilleumier, P	P2-M-187	Yamamoto, H	P3-N-230
Switonski, A	0.8.4, P1-A-5	Torii, Y	P1-F-121, P4-F-120	Wada, N	0.16.4	Yamamoto, M	P1-D-105
Szmekova, L	P2-M-199	Touzard, C	P3-M-192	Wada, Y	P1-A-13, P1-A-47	Yamamoto, S	Р1-С-77, Р1-Н-133,
Tacconi, C	P1-A-29	Tovoshima, I	P2-M-197		P4-C-74		P3-R-286, P4-B-68,
Taga, G	P2-R-285	Tretriluxana, J	P2-L-165	Waddington, J	P3-R-292		P4-F-122
Tagawa, T	P1-F-121, P4-F-120	Trindade, K	P2-R-287	Wakasa, M	P3-S-294	Yamamoto, Y	P3-M-210, P4-G-126
Takaaki, N	P3-P-258	Troosters, T	P1-B-49, P4-B-50	Walshe, E	P3-N-220	Yamanaka, T	P4-K-150
Takagi, Y	P1-E-111	Tsai, R	P2-M-191	Wang, T	0.13.4, P1-E-113	Yamanaka, M	P4-I-140
Takahashi, S	P2-L-151	Tsai, W	P2-L-173	Wang, S	P1-D-93	Yamanaka, T	P1-A-47
Takahashi, T	P4-F-122	Tsuboyama, T	P1-A-41	Wassink, R	0.8.3, P1-A-17	Yamane, H	P3-N-230
Takakura, H	P1-A-45	Tsukamoto, K	P4-C-74	Watanabe, M	P1-C-77, P3-P-256	Yamashita, H	P4-D-98
Takanishi, A	P3-0-238	Tsunoda, K	P2-0-241	Watanabe, H	P2-R-285	Yamashita, K	P4-A-30
Takano, D	P3-L-182	Tsutsumimoto, K	P2-N-225	Watanabe, H	P4-I-136	Yamasoba, T	P4-A-48
Takashima, S	P1-F-121, P4-F-120	Tsuyuguchi, N	P3-N-230	Weber, B	P4-A-12	Yamazaki, T	P3-L-182
Takayuki, S	P3-R-280	Tuerk, C	0.7.1, P3-L-170	Webster, K	P2-M-193	Yamazoe, H	P1-A-19, P1-J-143
Takebayashi, H	P1-B-59, P1-B-67	Turchenko, M	P3-P-260	Webster, M	0.6.4	Yang, W	P1-A-15
Takeda, T	P3-0-246	Tzemah, R	0.13.1, P3-N-224,	Wechsler-Yannai, O	P4-C-84	Yang, Y	P3-L-162
Takeda, F	P2-M-197		P3-Q-272	Weerdesteyn, V	S.7, 0.4.3, 0.11.4,	Yang, C	0.16.3, P3-M-198
Takeda, K	P4-G-126	Uchida, R	P4-D-104		P2-M-195, P2-M-203,	Yang, R	P1-E-113
Takeda, N	P4-C-74, P4-I-136	Uchiyama, Y	P2-L-151		P3-M-188, P3-M-206	Yang, S	P3-L-154
Takehiko, D	P2-L-161	Uemura, K	P1-C-85, P2-L-151	Wei Yang, S	P4-C-82	Yang, W C	P1-A-15, P3-P-266
Takei, T	P3-M-204	Uemura-Ito, S	P3-S-294	Weiss, A	0.1.1, 0.2.4, P1-A-21, D2 0 275 D4 A 24	Yasuda, K	P3-N-234
Takemoto, M	P1-A-41	Uesugi, M	P4-A-10		PZ-Q-273, P4-A-34, PA-C-80	Yasuda, M	P3-L-176
Takemura, K	0.2.2, P4-D-106	Ueta, K	P2-N-235, P3-L-160	Weiss D	P3-S-296	Yasuda, I	P2-P-269
Takimoto, K	P1-B-59, P1-B-67	Uiterkamp, R	0.8.3	Weisser R	P4-C-90	Yasuda, K	P3-P-254, P4-B-52
Takimoto, Y	P4-I-136	Uniszkiewicz, D	P4-B-66	Welter M	073 P2-L-179 P2-S-	Yasuhiko, H	P3-P-258
Takuma, Y	P1-B-67	Uno, A	P4-I-136	Weiter, m	293, P4-I-138	Yatomi, M	P4-D-102
Taminato, T	P3-M-204	Uno, Y	P2-0-239	Wen, W	0.7.1, P3-L-170	Yeh, Y	P1-K-149
Tamura, K	P1-A-35	Uno, Y	P1-A-35	Wertman, B	0.18.2	Yildirim, A	P3-0-244
Tamura, Y	P1-D-105	Vachalathiti, R	P2-L-165	Westby, G	0.7.3	Ying, H	P3-N-236
lan, D	P4-C-88, P4-D-96	van Bon, G	P2-M-203	Wichards, J	P4-B-62	Yoneyama, M	PZ-L-1//
lan, X	0.8.2	Van Calenbergh, F	0.10.3	Wik, P B	0.1.2	Yoshida T	P4-A-24
Tanabe, S	PI-A-9	van de warrenburg,	P3-M-188, P3-M-206	Wilcke, J	P3-M-186	Yoshida K	
Tanabe, S	P2-L-181	D van dan Bara, M	DA_C_76	Wild, P	P3-T-298	Yoshida T	P2-0-301, P3-0-302
Tanaka, N	P3-0-249	van den Berg, M	P4-C-76	Wildevuur, S	0.14.2	Voshikazu I	P1_R_67
Tanaka, M	P3-U-248	Van den Bergh V	P4-C-70	Williamson, R	P1-D-95	Vou V	P7_0_7/3
IdiidKd, I Tanaka V		van Dieen I	S 8 0 12 3 0 14 1 P4-	Wittwer, J	P2-M-193	Young W	P2-I-155
Tangan C	F I-D-JJ	van Dicch, J	A-18, P4-A-20, P4-J-142	Wojciechowski, K	0.8.4, P1-A-5	Young Y	P1-D-93 P4-D-100
Taniguchi M	P1-C-85	van Diest, M	0.14.2, 0.14.3	Woollacott, M	0.9.2, 0.12.1, P2-N-215	Young, Y. H	\$.3
	0 12 2 0 16 2 PA_A_A	van Geel, K	0.4.3	Wörtche, H	0.14.3	Youngkong, P	0.8.1.P1-C-87.P2-P-255
Taraldson K	5 2 0 16 1 P1-L-141	Van Impe, A	0.7.2	Wright, W. G	S.1	Yu. C	P4-K-146
lalalusell, K	P4-A-44	van Lummel, R	P4-A-18	Wu, H	P4-E-110	Yuka, K	P3-P-258
Tateuchi, H	P1-E-111	van Schooten, K	0.14.1, P4-J-142	Wu, N	P4-K-148	Yukiko, U	P3-P-258
Taura, A	P1-A-43 , P4-A-8	Vanrenterghem, J	P4-E-116	Wu, R	P3-P-266	Yukimune, M	P1-B-65, P4-B-64
Taylor, S	0.13.3	Venema, D	P2-Q-273	Wu, W	P1-C-83	Yuri, A	P3-M-204
Taylor, W	P1-C-81	Venture, G	0.2.1, P1-A-37, P3-	Wu, W	P3-P-268	Zambrano, D	P3-0-240
Teixeira, L	P2-N-219, P2-N-221		N-214	Wu, Y	P1-C-79	Zarubova, K	P3-M-190
Telonio, A	P4-B-70	Vereijken, B	0.8.2, 0.1.2, P1-A-23,	Wu, Y	P1-C-89	Zhang, F	P1-B-57
Tenniglo, M	P2-S-297		P3-P-264, P4-A-44	Wuehr, M	0.18.1	Zhang, H	P3-L-170
Thibaudier, Y	P4-B-70	Verkerke, G J	0.14.2, 0.14.3	Wühr, M	P1-D-101	Zhang, J	P3-L-164, P3-N-236
Thingstad, P	P1-J-141, P4-A-44	Verniba, D	P1-E-117	Wurster, I	P3-Q-276	Zhou, J	P3-L-164, P3-N-236
Ting, L	0.17.4, P4-H-130	Verrier, M	P4-K-148	Xiong, G	0.5.1, P2-Q-271	Zhuang, L	0.7.1
Tjernström, F	P2-P-273	Verschueren, S		Yagi, M	PI-E-115	Ziavra, N	0.10.2
Tobishima, R	P4-A-6	Verschueren, S	P2-L-157, P3-M-200,	Yagi, Y	r I-A- 19, PT-J-143	Zwergal, A	0.5.1, P2-Q-271
Toebes, M	0.12.3	Viana A	P4-B-56, P4-E-116	ragucni, C	U.II.I		
Togo, H	P2-L-151	Viana, A	U. IU. I D2 170	ramada, M	r1-A-41, PZ-N-225		
Toi, T	P1-A-13	viualihet, M	r2-l-1/9	Yamaguchi, T	P1-A-31		

Poster Session 1 YELLOW

Monday, June 24 between 13:15 and 15:15

A - Tools and methods for posture and gait analysis; Cognitive impairments

P1-A-1 The problem and device of notation for a power spectrum analysis on stabilometry

Masahiko Yamamoto¹, Tomoe Yoshida¹, Fuvuko Ikemiyagi¹, Mitsuya Suzuki¹

¹Toho University

P1-A-3 Clinical tools to assess balance in children and adults with cerebral palsy: a systematic review

Rannei Sæther¹, Jorunn Helbostad¹, Ingrid Riphagen¹, Torstein vik¹ ¹Norwegian University of Science and Technology

P1-A-5 Motion capture technique as a data source for computation of chosen gait indices as measures of gait asymmetry

*Henryk Josinski*¹, Adam Switonski¹, Magdalena Stawarz², Romualda Mucha³, Konrad Wojciechowski¹

¹Polish-Japanese Institute of Information Technology, ²Silesian University of Technology, ³Medical University of Silesia

P1-A-7 A new biomechanical interpretation of results from stabilogram-diffusion analysis

Naoko Oba¹, Shun Sasagawa¹, Akio Yamamoto¹, Kimitaka Nakazawa¹ ¹The University of Tokyo

Validity of the step length asymmetry estimated by an P1-A-9 accelerometer in patients with stroke

Kazuaki Oyake¹, Tomofumi Yamaguch², Shigeo Tanabe^{3,} Kunitsugu Kondo¹, Yohei Otaka¹

¹Tokyo Bay Rehabilitation hospital, ²Graduate School of Medicine, Keio University, ³Fujita Health University

P1-A-11 Development of a Tool for Measuring Muscle Synergy in People with Stroke: A pilot study

Rufai Ahmad¹, Huzaifa Abubakar¹, Abdulhamid Maje¹, Rabiu Magaji² ¹Bayero University, ²Ahmadu Bello University

P1-A-13 **Deviation Tendency of Stepping Test** Yasuyuki Nomura¹, Teruo Toi¹, Yoshiro Wada², Jacob Bloomberg³,

Ajitkumar Mulavara¹

¹Nihon University School of Medicine, ²Nara Medical University, ³NASA

Detecting Freezing-of-Gait Episodes in People with P1-A-15 Parkinson Disease by Lower Limb Kinetic Energy

Wen-Chieh Yang¹, Hung-Bin Chen¹, Wei-Li Hsu², Jian-Jiun Ding¹, Kwan-Hwa Lin²

¹National Taiwan University, ²College of Medicine, National Taiwan University

P1-A-17 Adaptive activity classification of compound activities facilitates detailed 3D kinematic and kinetic analyses in ambulatory monitoring

Chris Baten¹, Jose De Zeeuw¹, Ruben Wassink¹, Arjen Bergsma¹ ¹University of Twente

The effects of the knee braces on gait - toward leg disorder P1-A-19 estimation from images

Takuya Ogawa¹, Hirotake Yamazoe¹, Ikuhisa Mitsugami¹, Yasushi Yagi¹ ¹Osaka University

Balance and gait measures as predictors of cognitive P1-A-21 function in post-stroke patients

Einor Ben Assayag¹, Shani Shenhar-Tsarfaty¹, Efrat Kliper¹, Hen Hallevi ¹, Ludmila Shopin ¹, Natan Bornstein ¹, Amos Korczyn ¹, Nir Giladi¹, Anat Mike¹, Anat Mirelman¹, Aner Weiss¹, Jeffrey Hausdorff¹ ¹Tel Aviv Sourasky Medical Center

P1-A-23 Detection of active co-regulation of the structure and magnitude of stride time variability

Espen Alexander Ihlen¹, Beatrix Vereijken¹

¹Norwegian University of Science and Technology

Dynamic models provide insight into how motor trainings P1-∆-27 improve posture in aging

Olivier Coubard¹, Lena Ferrufino¹, Blandine Bril², Tetsushi Nonaka³, Gilles **Dietrich**⁴

¹CNS-Fed, ²Ecole des Hautes Etudes en Sciences Sociales, ³Kibi International University, ⁴Université Paris Descartes

P1-A-29 **Instrumented Functional Reach for Fall Risk Assessment** Andrea Cattabriga¹, Sabato Mellone¹, Luca Palmerini¹, Carlo Tacconi¹, Chiara Mussi¹, Lorenzo Chiari²

¹University of Bologna, ²Universita' degli studi di Modena e Reggio Emilia

P1-A-31 Desired center of pressure describes falls caused by induced slips

Takeshi Yamaguchi¹, Kei Masani², Shinya Fukuzawa², Hiroshi Onodera¹, Kazuo Hokkirigawa³

¹Tohoku University, ²University of Toronto, ³Japan Science and Technology Agency (JST)

P1-A-33 An analytical approach to find the range of feasible body movements for the control of balance

Mohammad Hadi Honarvar¹, Motomu Nakashima¹

¹Tokvo Institute of Technology

P1-A-35 Kinematic analysis of segmental trunk movement during sitto-stand in hemiplegic patients

Kazuhiro Ito¹, Yasuhiko Hatanaka¹, Takaaki Nakamata², Koichi Saito², Ryota Maegawa², Yuka Kitagawa¹, Yukiko Uno¹, Megumi Kitagawa¹, Kimiyoshi Tamura¹

¹Oumionsen hospital, ² Suzuka University of Medical Science

P1-A-37 A validation method for BSIP estimation techniques Gentiane Venture¹, Clint Hansen², Nasser Rezzoug³, Brice Isableu², Philippe Gorce³

¹Tokyo University of Agriculture and Technology, ²Univ. Paris-Sud, ³Univ Du Sud. **Toulon Var**

P1-A-39 Developing a functionally relevant test for dual task assessment in Parkinsons Disease

Carolien Strouwen¹, Pieter Ginis¹, Samvra Keus², Esther Molenaar², Liesbeth Münks¹, Marten Munneke², Alice Nieuwboer¹ ¹KU Leuven, ²Radboud University Nijmegen Medical Centre

- Quantification of changes in gait characteristics associated P1-A-41 with intermittent claudication in patients with lumber spinal stenosis

Koutatsu Nagai¹, Tomoki Aoyama², Minoru Yamada², Masanori Izeki², Shunsuke Fujibayashi², Mitsuru Takemoto², Shu Nishiguchi¹, Tadao Tsuboyama¹, Masashi Neo³

¹Kyoto Tachibana University, ²Kyoto University, ³Osaka Medical College

P1-A-43 Characteristic findings of stabilometry in patients with cervical vertigo

Akiko Taura¹, Kazuo Funabiki², Hiroko Torii³, Mami Matsunaga³, Juichi Ito³ ¹Kyoto University Hospital, ²Osaka Bioscience Institute, ³ Kyoto University

P1-A-45 Cortical responses during the dynamic posturography detected by functional near infrared spectroscopy(fNIRS) *Hiromasa Takakura*¹, Hideo Shoujaku¹, Hisao Nishijo¹

¹Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama

P1-A-47 Toward Instant Diagnosis in Balance Disorders Using Kinect *Hiroyuki Funaya*¹, Tomohiro Shibata¹, Yoshiro Wada², Toshiaki Yamanaka² ¹Nara Institute of Science and Technology, ²Nara Medical University

B - Sensorimotor control

P1-B-49 Enhanced proprioceptive postural control after inspiratory muscle training in individuals with low back pain

*Lotte Jansssens*¹, Thierry Troosters¹, Alison McConnell², Roeland Lysens², Madelon Pijnenburg¹, Nina Goossens¹, Jonas Raymaekers¹, Simon Brumagne¹

¹KU Leuven, ²Brunel University

P1-B-51 Establishing stimulation profiles for cutaneous receptors in the human foot sole

Nicholas Strzalkowski¹, Leah Bent¹

¹University of Guelph

P1-B-53 Congenital nystagmus may be not conjugate eye movements? -Report of our two cases-

Tomoyuki Okada¹, Masahiko Fukasawa¹, Yasuhiro Miyamoto¹, Yasuhiko Tanaka², Izumi Koizuka¹

¹St Marianna University School of Medicine, ²St Marianna University Yokohama City Hospital

P1-B-55 Dominant Effect of Visual Motion Cues on the Motion Perception Under Sensory Conflict Condition is Represented by High Sensory Weight in Internal Model

Sue Park¹, Hyerim Lim¹

¹KAIST

P1-B-57 Effects of Aging on Vestibular and Lower Limb Somatosensory input Interaction for Head and Trunk control during Normal and Narrow-based Walking

Nandini Deshpande¹, Fang Zhang¹

¹Queen's University

P1-B-59 Characteristics of force- and timing-control in aging: A study of foot-tapping

Koji Takimoto¹, Hideaki Takebayashi¹, Kenzo Miyamoto¹, Hideto Kaba² ¹Tosa Rehabilitation College, ²Kochi Medical School

P1-B-61 Head stabilization during walking on a compliant surface *Egidio Falotico*¹, Colas Authié¹, Kenji Hashimoto², Cecilia Laschi³, Daniel Bennequin¹, Paolo Dario⁴, Alain Berthoz¹

¹Scuola Superiore Sant'Anna, ²CNRS - Collège de France, ³Waseda University, ⁴Institut de Mathématiques de Jussieu

P1-B-63 Is dynamic visual information obtained at remote place available for locomotion through apertures?

Daisuke Muroi¹, Takahiro Higuchi¹

¹Tokyo Metroplitan University,

P1-B-65 Control of load and center of pressure of each left and right lower limb in anticipatory postural adjustments during multi-directional gait initiation

Masaki Yukimune¹, Tomonori Sawada¹, Nobuhiro Kito¹ ¹Hiroshima International University

P1-B-67 Effect of various information of sensory modality on the postural control

*Hideaki Takebayashi*¹, Suzuno Hiroi¹, Koji Takimoto¹, Kenzo Miyamoto¹, Yutaka Takuma¹, Inoue Yoshikazu¹, Shoko Miyamoto¹, Takao Okabe¹, Shu Morioka²

¹Tosa Rehabilitation College, ²Kio University

P1-B-69 Effect of temporal and spatial predictions to perturbations on stretch reflex responses of ankle extensor and flexor muscles during standing

*Kimiya Fujio*¹, **Hiroki Obata**¹, **Noritaka Kawashima**², **Kimitaka Nakazawa**¹ ¹The University of Tokyo, ²Research institute of the National Rehabilitation Center for Persons with Disabilities

P1-B-71 Walking on a split-belt treadmill independently affects H-reflex modulation and muscles background activation

Firas Massaad¹, David Drijkoningen¹, Karen Jansen¹, Pieter Meyns¹, Oron Levin¹, Ilse Jonkers¹, Jacques Duysens¹ ¹KULeuven

P1-B-73 Larger somatosensory stimuli contribute to the

improvement of motor control and motor skill acquirement Satoshi Kasahara¹, Hiroshi Saito¹, Mina Samukawa²

¹Japan, ²Hokkaido University

C - Exercise and physical activity

P1-C-77 Biomechanical characteristics of walking on a shallow slope Sho Watanabe¹, Takaharu Hosoda¹, Shin-ichiro Yamamoto¹, Noritaka Kawashima²

¹Shibaura Institute of Technology, ²Research Institute of NRCD, Japan

P1-C-79 Effects of Interactive Video-Game Based Exercise on balance in Diabetic Neuropathy

Shih-Ching Chen¹, Chien-Hung Lai¹, Yu-Ru Wu¹, Chih-Wei Peng¹, Chun-Wei Kang¹, Yu-Luen Chen¹

¹Taipei Medical University

P1-C-81 The Effect of a Nintendo® Wii Exercise Intervention on Gait in Older Adults

Anna Lee', John Biggan', Wyn Taylor', Ketaki Deo', Christopher Ray' 'University of Texas at Arlington

P1-C-83 The influence of taping on Kendo player

Jing-Min Liang¹, Chun-Hao Huang¹, Wen-Lan Wu¹, Jing-Min Liang¹ ¹Kaohsiung Medical University

P1-C-85 The predictors of improvement in walking ability in patients 1 month after total knee arthroplasty

*Masashi Taniguchi*⁷, Kazuki Uemura², Shoji Maegawa², Yuka Kojima¹, Chieko Ohzaki¹, Masato Kugo¹, Taku Kawasaki¹

¹Division of Physical Therapy, Rehabilitation Units, Shiga University of Medical Science Hospital, ²Graduate School of Medicine, Nagoya University

P1-C-87 A Pilot Study of a Novel Arrangeble Light Weight Force Sensors Systems for Balance Training.

Suppachet Panya¹, Prakarnkiat Youngkong¹

¹King Mongkut's University of Technology Thonburi

P1-C-89 Effects of Interactive Video-Game Based Exercise on balance in Parkinson's disease

*Chien-Hung Lai*¹, Hou-Chang Chiu¹, Shih-Ching Chen², Yu-Ru Wu¹, Chih-Wei Peng¹, Ming-Jun Lai¹, Yu-Luen Chen³

¹Taipei Medical University Hospital, ²Shin Kong WHS Memorial Hospital, ³Nursing and Management College

Chien-Hung Lai M.D., Ph.D.1,2, Hou-Chang Chiu M.D.3, Shih-Ching Chen M.D., Ph.D.1,2, Yu-Ru Wu, P.T.1,2, Chih-Wei Peng P.T., Ph.D.1,2, Ming-Jun Lai M.D. 1,2, Yu-Luen Chen Ph.D.4,5 1 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University 2 Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital 3 Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan 4 Catholic St. Mary's Medicine, Nursing and Management College 5 Department of Computer Science, National Taipei University of Education, Taipei, Taiwan Abstract

P1-C-91 Lower limb movement modifications affect trunk and pelvis in females with patellofemoral pain

Valentina Graci¹, Gretchen Salsich²

¹University of Maryland School of Medicine, ²Saint Louis University

D - Vestibular function and disorders

P1-D-93 Correlations between foam posturography and vestibularevoked myogenic potential tests in Meniere's disease

Bing-Yi Lin¹, Chuan-Yi Lin¹, Shou-Jen Wang¹, Yi-Ho Young¹ ¹National Taiwan University Hospital

P1-D-95 Walking balance tests to screen for vestibular disorders *Helen Cohen*¹, Jacob Bloomberg², June Kampangkaew¹, Ajitkumar Mulavara³, Brian Peters⁴, Natalia Ricci⁵, Haleh Sangi-Haghpeykar¹, Robert Williamson¹, Jeffrey Vrabec¹

¹Baylor College of Medicine, ²NASA/ Johnson Space Center, ³Universities Space Research Association, ⁴Wyle Science, Technology and Engineering Group, ⁵Federal University of Sao Paulo

P1-D-97 Balance Symptoms at Referral of Patients With Peripheral Vestibular Disease

Kathrine Jauregui-Renaud¹, Aralia Gutierrez-Marquez¹, Leticia Viveros-Rentería¹, Verónica Ramos-Toledo¹, Fátima Gómez-Alvarez¹ ¹Instituto Mexicano del Seguro Social

P1-D-101 Balance control in phobic postural vertigo

Klaus Jahn', Roman Schniepp¹, Sigbert Krafczyk¹, Thomas Brandt¹, Max Wühr¹

¹University of Munich

P1-D-103 The age difference of postural sway under the different eyeto-object distance and downward gazing

Osamu Aoki¹, Yoshitaka Otani², Kazuhisa Domen³

¹Shijonawate Gakuen University, ²Kobe International University, ³Hyogo College of Medicine

P1-D-105 Changes in the tracking axis of the Body Tracking Test among healthy people and patients with vestibular neuronitis *Tomoe Yoshida*¹, Masahiko Yamamoto¹, Yuya Tamura¹, Toshitake Tanaka¹, Fuyuko Ikemiyagi¹, Yoshihiro Ikemiyagi¹, Mitsuya Suzuki¹ ¹Toho University Sakura Medical Center

P1-D-107 Two cases with Wernicke's encephalopathy Yasuo Ogawa', Nobuhiro Nishiyama', Taro Inagaki', Koji Otsuka', Mamoru Suzuki'

¹Tokyo Medical University

E - Orthopedic diseases and injuries

P1-E-109 Spatial perception Space perception and motor behavior in young adults with scoliosis

Jensuh Chern¹, Chia-Chi Gao¹, Lai Po-Liang², Chi-Wen Lung ³, Chia-ching Li ¹, Szu-Yu Chen ¹

¹Chang Gung University, ²Lin kuo Chang Gung Memorial Hospital , ³Asia University

P1-E-111 Gait parameters and knee adduction moment during walking in subjects with knee osteoarthritis

*Yui Takagi*⁷, Hiroshige Tateuchi², Yusuke Goto², Naoki Otsuka², Masashi Kobayashi³, Koji Sato¹, Noriaki Ichihashi²

¹Nagoya University Hospital, ²Kyoto University, ³Kobayashi orthopedic clinic

P1-E-113 Compensatory Muscle Activations during Forward Reach Task after Minimal Invasive Spinal Fusion Surgery

Ting-Yun Wang¹, Chen-Hsi Hsiao¹, Jwo-Luen Pao², Rong-Sen Yang³, Wei-Li Hsu¹

¹National Taiwan University, ²Far Eastern Memorial Hospital, ³National Taiwan University Hospital

P1-E-115 Do knee osteoarthritis patients perform efficient Sit-tostand motion?

Masaya Anan¹, Koichi Shinkoda¹, Kentaro Suzuki², Masahide Yagi³, Takuya Ibara⁴, Nobuhiro Kito⁵

¹Hiroshima University, ²Nagoya University Hospital, ³Midorii Orthopaedics Joint Reconstruction & Arthroscopy, ⁴Kawashima Orthopaedic Hospital, ⁵Hiroshima International University

P1-E-117 The effects of fatigue on adopted drop-landing mechanics *Brian Street*¹, Dmitry Verniba¹, William Gage¹ ¹York University

F - Aging

P1-F-119 Gender specific associations of anthropometry with postural balance during feet-together stance in the elderly

Ji-Won Kim¹, Yu-Ri Kwon¹, Gwang-Moon Eom¹ ¹Konkuk University

P1-F-121 Effects of age and gender on mediolateral balance control in gait

Masaru Ichikawa', Takehiro Tagawa¹, Shingo Takashima¹, Yuusuke Torii¹, Tsuyoshi Nishiwaki¹

¹ASICS Corporation

G - Aging; Coordination of posture and gait

P1-G-123 Trunk variability during gait decreases the year after cataract surgery in older people

*Ole Petter Norvang*¹, Thorlene Egerton¹, Jorunn Helbostad¹ ¹NTNU

P1-G-125 Toe clearance and walking pattern on responding to unexpected surfaces in dual task; comparison between healthy older and young adults

Nobuko Harada¹, Shuichi Okada²

¹Osaka Yukioka College of Health Science, ²Kobe University

H - Coordination of posture and gait

P1-H-127 Inter-joint Coordination in Patients with Cervical Spondylosis During Obstacle Crossing

Tung-Wu Lu¹, **Zhi-You Chen**¹, **Dar-Ming Lai**¹, **Wei-Ching Lo**¹ ¹National Taiwan University,

P1-H-129 Control of Segment Variability and Postural Challenge with Varying Walking Speeds

Stephen Prentice⁷, Glynnis Pardo¹, Kunal Khare¹, Nicholas Frank¹ ¹University of Waterloo

P1-H-131 Implicit adjustment of postural control strategy with a realtime feedback movable footplate

Noritaka Kawashima¹, Hisakazu Ihara² ¹Research Institute of NRCD, Japan, ²Shibaura Institute of Technology

P1-H-133 Postural control strategy under water environment *Hisakazu Ihara*¹, **Shin-ichiro Yamamoto**¹, **Noritaka Kawashima**² ¹Shibaura Institute of Technology, ²Research Institute of NRCD, Japan

I - Learning, plasticity and compensation

P1-I-135 Using a robotic AFO to study the extent/limits of short-term adaptive plasticity during human walking.

Laurent Bouyer¹

¹CIRRIS-Universite Laval

P1-I-137 Type 2 diabetes alters the relationship between cerebral blood flow and gait speed in older adults

Azizah Jor'dan¹, Brad Manor¹, Vera Novak¹

¹Harvard Medical School/Beth Israel Deaconess Medical Center

P1-I-139 Do individuals account for increases in body size when walking through apertures?

Amy Hackney¹, Michael Cinelli², Jim Frank¹

¹University of Waterloo, ²Wilfrid Laurier University

J - Activity Monitoring; Aging

P1-J-141 Physical behaviour and function early after hip fracture part of the Trondheim Hip Fracture Trial

Kristin Taraldsen¹, Olav Sletvold¹, Pernille Thingstad², Ingvild Saltvedt¹, Malcolm Granat³, Jorunn Helbostad²

¹NTNU, ²St.Olavs University Hospital and NTNU, ³Glasgow Caledonian University

P1-J-143 Observation of Gait Changes Associated with Human Intentions

Mitsuru Nakazawa', Ikuhisa Mitsugami', Hirotake Yamazoe', Yasushi Yagi'

¹Osaka University

P1-J-145 Validity and reliability of accelerometers and GPS to measure community ambulation after stroke.

Niruthikha Mahendran¹

¹University of Queensland

K - Balance support device; Exercise and physical activity

P1-K-147 Evaluation of sitting balance in elderly persons *Kimio Saito*¹, Toshiki Matsunaga², Takehiro Iwami³, Yoichi Shimada¹ ¹Akita University Graduate School of Medicine, ²Akita University Hospital, ³Akita University

P1-K-149 Limit of Stability Changes between Young and Middle-Old Aged Groups after Ankle Fracture

Yun-Chen Yeh¹, Fang-Ching Lin¹, Shuya Chen¹, Ying-Hao Chen¹, Hsiu-Chen Lin¹, Horng-Chaung Hsu¹

¹China Medical University

Poster Session 2 GREEN

Monday, June 24 between 15:30 and 17:30

L - Falls and falls prevention; Aging

P2-L-151 Choice step reaction to a selective attention task is

prolonged by errors of postural preparation in older adults Kazuki Uemura', Shuhei Takahashi', Hiroki Togo', Masato Kako', Yasushi Uchiyama'

¹Nagoya University

P2-L-153 Essential Concept of Fall-risk Classification and Formulae to Consider Fall-risk Scores

Hisao Nagata¹

¹Institute for Science of Labour

P2-L-155 How fear of falling influences visual behaviours during adaptive gait.

William Young¹, Mark Hollands²

¹Brunel University, ²Liverpool John Moores University

P2-L-157 Older adults perform worse than young in a dual task when response inhibition is required

Zrinka Potocanac¹, Ellen Smulders², Mirjam Pijnappels³, Sabine

Verschueren³, Jacques Duysens¹

- $^1\mbox{KU}$ Leuven, $^2\mbox{Tolbrug}$ RC 's-Hertogenbosch, $^3\mbox{VU}$ Amsterdam
- P2-L-159 The Community Balance and Mobility Scale alleviates the ceiling effects observed in the currently used assessments for the higher-functioning community dwelling elderly

Chitra lakshmi K Balasubramanian¹, Dawn Saracino¹ ¹University of North Florida

P2-L-161 Does arm swing emphasized deliberately increase the trunk stability during walking in the elderly adults?

Sho Nakakubo¹, Doi Takehiko², Sawa Ryuichi¹, Misu Shogo³, Tsutsumimoto Kota², Ono Rei¹

¹Kobe University Graduate School of Health Sciences, ²Section for Health Promotion Department for Research and Development to Support Independent Life of, ³Kobe City Hospital Organization, Kobe City Medical Center West Hospital

P2-L-163 The effects of route previewing on gaze behavior during adaptive locomotion

Benjamin Curzon-Jones¹, Mark Hollands²

¹University of Birmingham, ²Liverpool John Moores University,

P2-L-165 Mechanism underlying protective stepping response: Effect of light touch and age

Tippawan O-Phartkaruna¹, Sopa Pichaiyongwongdee¹, Jarugool Tretriluxana¹, Roongtiwa Vachalathiti¹ ¹Mahidol University

Manual University

P2-L-167 Effect of task complexity on cognitive and motor prioritization during dual-task walking

Tanvi Bhatt¹ Prakruti Patel¹

¹University of Illinois

P2-L-169 Combining stepping and cognition: the ability of two tests to discriminate between fallers and non-fallers

Daniel Schoene¹, Kim Delbaere¹, Stuart Smith¹, Stephen Lord¹ ¹Neuroscience Research Australia

P2-L-171 Alcohol intoxication changes posture alignment strategies when standing with eyes open and closed

Anna Hafstrom¹, Mitesh Patel ³, Mans Magnusson¹, Per-Anders Fransson¹ ¹Skane University Hospital, ²Department of Otorhinolaryngology Head and Neck surgery

P2-L-173 Uncontrolled Manifold Analysis of Obstacle-Crossing in Young Adults

*Wei-Chun Tsai*¹, Jia-Da Li¹, Tung-Wu Lu¹ ¹National Taiwan University

P2-L-175 Temporal response of human bipedal walking to a perturbation induced by a split-belt treadmill

Takaaki Oku¹, Naomichi Ogihara¹

¹Keio University

P2-L-177 Detecting freezing of gait and falls using motion recorder and home video in Parkinson's disease patients during everyday activities

Yasuyuki Okuma¹, Hiroshi Mitoma², Mitsuru Yoneyama³ ¹Juntendo University Shizuoka Hospital, ²Tokyo Medical University, ³Mitsubishi Chemical Group Science and Technology Research Center

P2-L-179 Physiopathology of freezing of gait (FOG) and falls in Parkinson's disease (PD) patients treated with subthalamic (STN) deep brain stimulation (DBS)

Florence Cormier-Dequaire¹, Sara Fernandez Vidal¹, Adele Demain¹, Hayat Belaich¹, Carine Karachi¹, Marie Vidailhet¹, David Grabli¹, Marie-Laure Welter¹

¹Pitie-Salpetriere Hospital

P2-L-181 Does the Vitamin D multi-nutrient supplementation increase the fluidity of sit-to-walk motion in chronic stroke patients?

Yuji Osada¹, Noriko Hagiwara¹, Saori Tanabe¹, Mizuho Ota¹, Hirotaka Shimizu¹, Hideyuki Nanri¹, Masako Fuchi¹, Setsuro Ibayashi¹ ¹Seiai Rehabilitation Hospital

P2-L-183 Eye-foot coordination and lateral stability: protective stepping following balance perturbations versus voluntary stepping

Valentina Graci⁷, Robert Creath¹, Joseph Barton¹, Kaitlin Riddle¹, Mark Rogers¹

¹University of Maryland School of Medicine

M - Neurological diseases; Aging

P2-M -185 Cortical gray matter volume and gait functions in Parkinson disease

*Martijn Muller*¹, **Roger Albin**¹, **Kirk Frey**¹, **Nicolaas Bohnen**¹ ¹University of Michigan

P2-M -187 Neuroanatomy of space, body and posture perception in brain-damaged patients

Arnaud Saj¹, Jacques Honoré², Patrik Vuilleumier¹, Marc Rousseaux³ ¹University Hospital of Geneva, ²University of Lille Nord de France, ³Lille University Medical Center

P2-M -189 Feasibility of Using Inertial Sensors in the Clinic with DBS Patients to Assess Gait and Balance

Patricia Carlson-Kuhta¹, Martina Mancini¹, Shannon Donovan¹, Matthew Brodsky¹, Fay Horak¹

¹Oregon Health & Science University

P2-M -193 The effects of a concurrent motor task on walking in Alzheimers disease

Joanne Wittwer¹, Kate Webster¹, Keith Hill²

¹La Trobe University, ²Curtin University

P2-M -195 Postural set rigidity in Parkinson's disease does not impair compensatory stepping

*Katrijn Smulders*¹, Rianne Esselink¹, Bert De Swart¹, Alexander Geurts¹, Bastiaan Bloem¹, Vivian Weerdesteyn¹

¹Radboud University Nijmegen Medical Centre

P2-M -197 Reversible astasia-abasia syndrome caused by callosal infarction

Sachiko Kamada¹, Masashiro Sugawara¹, Satoshi Ohkawa¹, Akira Hanazono¹, Masazumi Matsuda¹, Fusako Takeda¹, Hirohide Ohnishi¹, Itaru Toyoshima¹

¹Department of Neurology, Akita University School of Medicine

P2-M -199 The efficiency of functional gait training by using virtual and augmented reality on symmetrization and speed of walking in postacute stroke patient

Zuzana Jurutkova¹, Lucie Szmekova¹, Petra Bastlova¹, Barbora Kolarova¹, Alois Krobot¹

¹ Palacky University in Olomouc

P2-M -201 Relation between arm posture and gait instability in typically developing children and children with hemiplegia

Pieter Meyns¹, Sjoerd Bruijn¹, Jacques Duysens¹, Kaat Desloovere¹ ¹KU Leuven

P2-M -203 Additional weight load increases the number of freezing of gait episodes in idiopathic Parkinson's disease

Lars Oude Nijhuis¹, Senja Mensink¹, Jorik Nonnekes¹, Geert van Bon¹, Anke Snijders¹, Jacques Duysens², Vivian Weerdesteyn¹, Bastiaan Bloem¹ ¹Radboud University Nijmegen Medical Centre, ²Katholieke Universiteit Leuven

P2-M -205 GBA-PD versus sporadic PD: Difference in postural control Karin Srulijes¹, Senait Ogbamicael¹, Kathrin Brockmann¹, Markus Hobert¹, Mirjam Maechtel¹, Sandra Hasmann¹, Daniela Berg¹, Walter Maetzler¹ ¹Center of Neurology, University of Tuebingen

P2-M -207 Association between muscle coactivation and center of pressure movement during gait initiation in individuals with hemiplegia after stroke

*Ryosuke Kitatani*¹, Koji Ohata¹, Yu Hashiguchi¹, Natsuki Yamakami¹, Kaoru Sakuma¹, Yumi Aga¹ ¹Kyoto University

P2-M -209 Factors affecting stiff-legged gait in Cerebral Palsy *Jonathan Marsden*¹, Elle Compton¹, Gary Shum¹, Robert Jeffery², Ben Bradley³

¹Plymouth University, ²Plymouth Hospitals NHS Trust, ³South Devon Healthcare NHS Foundation Trust

P2-M -211 Resting state functional connectivity in the motor network in individuals with Parkinson disease

Kristen Pickett¹, Daniel Peterson¹, Jonathan Koller¹, Meghan Campbell¹, Abraham Snyder¹, Joel Perlmutter¹, Gammon Earhart¹ ¹Washington University School of Medicine

P2-M -213 Kinematic analysis of reaching movement with different height of obstacle in stroke patients.

*Shih-Wun Hong*¹, Hei-Fen Mao², Jiann-Shing Jeng³, Tung-Wu Lu¹ ¹Institute of Biomedical Engineering, National Taiwan University, Taiwan, ²School of Occupational Therapy, National Taiwan University, Taiwan, ³Department of Neurology, National Taiwan University Hospital, Taiwan

N - Cognitive, attentional and emotional influences

P2-N-215 Preclinical mobility disability in people with Parkinson's disease: a survey

*Robyn Lamont*¹, Meg Morris², Marjorie Woollacott³, Sandra Brauer¹ ¹University of Queensland, ²Latrobe University, ³University of Oregon

P2-N-217 The benefits of cognitive and physical training on dual-task walking

*Karen Li*¹, Sarah Fraser², Patrick Roy², Lora Lehr², Maxime Lussier², Nicolas Berryman², Laurence Desjardins-Crépeau², Thien Tuong Minh Vu², Marie-Jeanne Kergoat², Louis Bherer¹

¹Concordia University, ²Centre de recherche institut universitaire de gériatrie de Montréal (CRIUGM)

P2-N-219 Adapting postural responses on the basis of constraints imposed by a voluntary task in the elderly

Andrea De Lima-Pardini⁷, Daniel Coelho¹, Marina Silva¹, Luis Teixeira¹ ¹University of Sao Paulo

P2-N-221 Precueing about kind and time of perturbation leads to improved postural responses in young and older individuals *Marina Silva*¹, Daniel Coelho¹, Thais Baptista¹, Alessandra Martinelli¹,

Andrea Pardini¹, Luis Teixeira¹

¹USP

P2-N-223 Adaptive postural response to imagined arm movements in older people

Nicola Doherty[†], Elizabeth Maylor¹, Suvobrata Mitra¹ ¹University of Warwick

P2-N-225 The impacts of fear of falling on trunk variability during gait in community-dwelling elderly

*Ryuichi Sawa*¹, Takehiko Doi², Kota Tsutsumimoto², Shogo Misu³, Sho Nakakubo¹, Tsuyoshi Asai⁴, Minoru Yamada⁵, Rei Ono¹

¹Kobe University Graduate School of Health Science, ²National Center for Geriatrics and Gerontology, ³Kobe City Hospital Organization Kobe City Medical Center West Hospital, ⁴Kobegakuin University Faculty of Rehabilitation, ⁵Kyoto University Graduate School of Medicine

P2-N-227 Interference of the Stroop test with concurrent postural sway

Yoshifumi Ikeda¹, Hideyuki Okuzumi¹, Mitsuru Kokubun¹, Koichi Haishi² ¹Tokyo Gakugei University, ²Joetsu University of Education

P2-N-229 The effect of divided attention on axial plane trunk kinematics during locomotion in healthy young adults and persons with a history of recurrent low back pain

Jo Armour Smith¹, Kornelia Kulig¹ ¹University of Southern California

University of Southern California

P2-N-231 Spatial versus non-spatial cognitive task effects on walking stability in older adults

Jasmine Menant¹, Daina Sturnieks¹, Matthew Brodie¹, Joanne Lo¹,

Stephen Lord¹ ¹Neuroscience Research Australia

P2-N-233 Rule for scaling shoulder rotation angles while walking through apertures

Takahiro Hiquchi¹

¹Tokyo Metropolitan University

P2-N-235 Increasing internal focus of attention increases body sway and decreases cortical activities during quiet standing in young healthy adults

Kozo Ueta¹, Hideki Nakano¹, Michihiro Osumi¹, Shu Morioka¹ ¹Kio University

P2-N-237 Self-Immersion and Visual Angle Impact Temporal Gait Characteristics during Treadmill Walking

*Chun-Kai Huang*¹, Ka-Chun Siu¹

¹University of Nebraska Medical Center

O - Modeling, robotics and biomechanics and implantable neuroprosthesis

P2-0-239 Coordination between the stance and swing leg in perturbed walking

*Takahiro Kagawa*¹, Yoji Uno¹

¹Nagoya University

P2-0-241 Adjustment of the angle of attack during human walking on sloped surfaces

Kei Tsunoda¹, Naomichi Ogihara¹

¹Keio University

P2-0-243 Motion analysis of hydraulic leg press machine for elder people

*Shu-Zon Lou*¹, Chiun-Ling Chen¹, Jin-San Ho², Ya-Yuan you³, Yu-Chi Chen⁴ ¹Chung Shan Medical University, ²National Taiwan Sport University, ³I-Shou University, ⁴ China Medical University

P2-0-245 Effects of weight bearing on the kinematic change of the mid and hind foot

Yasuhiko Hatanaka¹, Takaaki Nakamata¹, Koichi Saito¹

¹Suzuka University of Medical Science

P2-0-247 Pennation angles of ankle dorsiflexor and plantarflexor muscles depending on the muscle contraction intensity and ankle angles.

Seunghyeon Kim¹, Jongsang Son¹, Youngho Kim¹ ¹Yonsei University

P2-0-249 Effects of an objective function on adjustment of muscle model parameters

Jongsang Son¹, Seunghyeon Kim¹, Youngho Kim¹ ¹Yonsei University

P2-0-251 A differential games approach to study spatial navigation in the presence of dynamic obstacles

Anuja Darekar¹, Valery Goussev², Bradford McFadyen³, Anouk Lamontagne¹, Joyce Fung¹

¹McGill University, ²Feil & Oberfeld CRIR Research Center, Jewish Rehabilitation Hospital, ³Université Laval

P2-0-253 Testing the natural-synergy control concept on a human-inspired biped robot

Georg Hettich¹, Alexey Alexandrov², Alexander Frolov², Thomas Mergner¹ ¹University Freiburg, ²Inst. of Higher Nervous Activity and Neurophysiology

P - Habilitation and rehabilitation; Cognitive, attentional and emotional influences

P2-P -255 Interpersonal Computer Game Enhance Performance and Motivation of Chronic Stroke Patients to Practice Balance Skill

Sanandunk Koonsiripiboon¹, Prakarnkiat Youngkong¹ ¹King Mongkut's University of Technology Thonburi,

P2-P -257 Training to walk amid uncertainty with Re-Step: measurements and changes with perturbation training for hemiparesis and cerebral palsy

Simona Bar-Haim¹

¹Ben-Gurion University

P2-P -259 High muscle tone increases ipsilateral cortical excitability in healthy subjects

Akihiro Matsuura', Tetsuya Karita¹, Naoyuki Nakaso¹, Yoshihiro Kondo¹, Futoshi Mori²

¹Daisen Rehabilitation Hospital, ²Yamaguchi University

P2-P -261 The effect of the biomechanical technique of gait correction for patients with central hemiparesis syndrome after stroke

Maria Abroskina', Semen Prokopenko¹, Vitaliy Lytnev¹, Vera Ondar¹, Elvira Gasymly¹

¹Krasnoyarsk State Medical University

P2-P -263 Effect of Transcranial Direct Current Stimulation (tDCS) on Protective Stepping Response in Parkinson's Disease

*Pei-Yun Lee*⁷, Kris Gadareh¹, Adolfo Bronstein¹ ¹Imperial College London

P2-P -265 Attitudes and adherence to home-based dual task gait training using MP3 players in PD patients

*Liesbeth Munks*¹, Carolien Strouwen¹, Pieter Ginis¹, Samyra Keus², Esther Molenaar², Marten Munneke², Alice Nieuwboer¹

¹KULeuven, ²Radboud University

P2-P -267 Gait abnormalities after stroke: beyond the hemiparesis Olga Dobrushina', Pavel Snopkov', Irina Sidyakina', Tatiana Shapovalenko', Konstantin Lyadov' 'Treatment and Rehabilitation Center

P2-P -269 A comparison of the kinematics and kinetics of overground walking and a functional mobility task in healthy subjects *Shintarou Kudo'*, Yasuhiko Hatanaka¹, Ippei Yasuda², Tatsuya Naruse², Kyoko Fujiwara², Takanori Sato³

¹Graduate school of Suzuka University of Medical Science, ²International Institute of Medical Therapy, ³Wagounosato of Elderly Healthcare Facility

Q - Cognitive impairments; Aging

P2-Q-271 Cerebral correlates of gait impairment in mild cognitive impairment

Andreas Zwergal¹, Florian Schöberl¹, Guoming Xiong¹, Katharina Bürger¹, Christian La Fougere¹, Klaus Jahn¹ ¹University of Munich

P2-Q-273 Effects of Dual-Task Training in Older Adults with Cognitive Impairment: A Case Series Study

Ka-Chun Siu¹, Shannon Roth¹, Chun-Kai Huang¹, Dawn Venema¹ ¹University of Nebraska Medical Center

P2-Q-275 Association between performance on Timed Up and Go sub-tasks and Mild Cognitive Impairment: Further insights into the cognitive aspects of the TUG

Anat Mirelman¹, Aner Weiss¹, Aron Buchman², David Bennett², Nir Giladi¹, Jeffrey Hausdorff¹

¹Tel Aviv Sourasky Medical Center, ²Rush Alzheimer's Disease Center, Rush University Medical Center

P2-Q-277 Balance performance across three stages of cognitive impairment and Alzheimer's disease

*Gro Tangen*¹, Knut Engedal², Astrid Bergland³, Anne Marit Mengshoel¹ ¹University of Oslo, ²Norwegian Center for Ageing and Health, ³Oslo and Akershus University College of Applied Sciences

R - Development of posture and gait; Coordination of posture and gait

P2-R-279 Visual Height Intolerance: Gaze Behavior at Upright Stance Thomas Brandt¹

¹Clinical Neurosciences

P2-R-281 Adjustments of the kinematic gait parameters during pregnancy

Wanda Forczek¹, Yuri Ivanenko²

¹University School of Physical Education in Krakow, ²IRCCS Fondazione Santa Lucia

P2-R-283 A functional approach to learning to walk: a longitudinal study

Blandine Bril¹, Lucile Dupuy¹, Gilles Dietrich², Daniela Corbetta³ ¹Ecole des Hautes Etudes en Sciences Sociales, ²Techniques et Enjeux du Corps, Université Paris Descartes, ³University of Tennessee

P2-R-285 Developmental change in variability of rolling over from supine to prone position in infants

Yoshio Kobayashi¹, Hama Watanabe¹, Gentaro Taga¹ ¹Graduate School of Education, The University of Tokyo

P2-R-287 Postural control and visual information in children with cerebral palsy

Ana Barela¹, Melissa Celestino¹, Karyna Trindade¹, Jose Barela¹ ¹Universidade Cruzeiro do Sul

P2-R-289 Walking and running gait in children with Developmental Coordination Disorder

*Susan Morris*¹, Jenny Downs², Nicola Diamond¹ ¹Curtin University, ²Institute for Child Health Research

P2-R-291 Factors affecting performance of tray-carrying task in children with intellectual disabilities

*Shogo Hirata*¹, Hideyuki Okuzumi², Yoshio Kitajima¹, Tomio Hosobuchi³, Mitsuru Kokubun²

¹Chiba University, ²Tokyo Gakugei University, ³Saitama University

S - Effect of medication on posture and gait; Falls and falls prevention

P2-S-293 Effect of pedunculopontine nucleus stimulation at low frequency on gait and balance disorders in advanced Parkinson's disease

Adèle Demain¹, Claire Ewenczyk¹, Marie-Laure Welter¹, Amine El Helou¹, Brian Lau², Chantal François², Carine Karachi², David Grabli¹ ¹CR-ICM 1er étage CIC, ²CR-ICM 5ème étage CIC

P2-S-295 Dyskinesia detection and monitoring by means of a single inertial sensor in patients with Parkinson's Disease

Sabato Mellone¹, Giovanna Lopane¹, Manuela Contin¹, Lorenzo Chiari¹ ¹University of Bologna

P2-S-297 Effect of chemodenervation of the rectus femoris muscle in adults with a Stiff Knee Gait due to Spastic paresis : A systematic review with a meta analysis in Stroke patients.

Martin Tenniglo¹, Marc Nederhand¹, Erik Prinsen¹, Anand Nene¹, Hans Rietman¹, Jaap Buurke¹

¹Roessingh Research & Development

T - Ergonomics; Aging

P2-T-299 The effects of floor material, surface condition, and repetition on gait during walking *Chien-Chi (Max) Chang*¹, Mary Lesch¹, Wen-Ruey Chang¹ ¹Liberty Mutual Research Institute for Safety

U - Psychiatric disorders; Vestibular function and disorders

P2-U-301 Psychiatric comorbidity in patients with dizziness *Kensuke Kiyomizu*¹, Keiji Matsuda², Koji Torihara³, Meiho Nakayama⁴, Shinji Fukudome², Shinya Sato³, Takeshi Nakamura⁵, Yasushi Ishida², Kensei Yoshida¹, Tetsuya Tono²

¹Yoshida Hospital , ²Faculty of Medicine, University of Miyazaki, ³Miyazaki prefectural Nobeoka Hospital, ⁴Nagoya City University, ⁵Miyakonojo National Hospital

Poster Session 3 PINK

Tuesday, June 25 between 10:00 and 12:00

L - Falls and falls prevention; Aging

P3-L-152 Analysis Of 857 Cases With In-Hospital Falls Hiroyuki Harada', Yasushi Naito', Shyougo Shinohara', Keizou Fujiwara', Masahiro Kikuchi', Yuuji Kanazawa', Risa Tona', Ippei Kishimoto' 'Kobe City Medical Center General Hospital, Japan

P3-L-154 Using Motion Analysis in Single Leg Standing Task to Predict Fall Risk for the Elderly

*Chun-Ju Chang*¹, Yu-Shin Chang¹, Sai-Wei Yang¹ ¹Deparment of Biomedical Engineering, National Yang-Ming University

P3-L-156 Biomechanical Balance Parameters In Frontal Plane Predict Prospective Falls In Elderly Adults

Tzurei Chen¹, Li-Shan Chou²

¹University of Evansville, ²University of Oregon

P3-L-158 Falls-associated parameters in a cohort of 641 elderlythe TREND study

Sandra Hasmann¹, Markus Hobert¹, Jochen Klenk², Benjamin Röben¹, Jana Godau¹, Clemens Becker², Daniela Berg¹, Walter Maetzler¹ ¹University of Tuebingen, ²Robert-Bosch-Krankenhaus

P3-L-160 Effect of a plantar perceptual learning task on walking stability in the elderly: a randomized controlled trial

Hideki Nakano¹, Makoto Nozaki², Kozo Ueta¹, Michihiro Osumi¹, Seigou Kawami³, Shu Morioka¹

¹Graduate School of Health Science, Kio University, ²Medicare Rehabilitation Corporation, ³Higashi Osaka Yamaji Hospital

P3-L-162 Risk Factors for Head Impact during Falls in Older Adults Residing in Long-Term Care

*Yijian Yang*¹, Dawn Mackey¹, Teresa Liu-Ambrose², Stephen Robinovitch¹ ¹Simon Fraser University, ²University of British Columbia

P3-L-164 The complexity of standing postural control in older adults: A modified detrended fluctuation analysis based upon the empirical mode decomposition algorithm

Junhong Zhou¹, Brad Manor², Dongdong Liu¹, Kun Hu³, Jue Zhang¹, Jing Fang¹

¹Peking University, ² Harvard Medical School, ³ Brigham and Women's Hospital/ Harvard Medical School

P3-L-166 Risky gaze behaviour adopted by older adults during virtual walking is linked to cognitive decline

Mark Hollands¹, Jennifer Stanley²

¹Liverpool John Moores University, ²University of Birmingham

P3-L-168 Slow walking as a strategy for optimizing performance on cognitive task during dual task walking.

Tanvi Bhatt¹, Prakruti Patel¹

¹University of Illinois

P3-L-170 Distribution of gray matter atrophy in older people with concern about falling: A voxel-based morphometric study

*Kim Delbaere*¹, Carola Tuerk¹, Haobo Zhang¹, Wei Wen¹, Stephen Lord¹, Jacqueline Close¹, Henry Brodaty¹, Perminder Sachdev¹

¹University of New South Wales

P3-L-172 Influence of Parkinson's disease on segmental coordination during turning with and without vision

Sakineh Akram¹, James Frank¹, Mandar Jog²

 1 University of Waterloo, 2 Movement Disorders Clinic, London Health Sciences Centre

P3-L-174 An examination of dynamic momentum control during gait using regions of stability

Masahiro Fujimoto¹, Li-Shan Chou²

¹University of Maryland School of Medicine, ²University of Oregon

P3-L-176 Learning by doing: can perception of affordance for aperture crossing be improved immediately after experience in actual passage?

Masaaki Yasuda¹, Takahiro Higuchi¹

¹Tokyo Metropolitan University

P3-L-178 Neuropsychological, balance and gait risk factors for falls in people with multiple sclerosis: a prospective cohort study

Stephen Lord¹, Phu Hoang¹, Simon Gandevia¹, Michelle Cameron² ¹Neuroscience Research Australia, ²Department of Neurology, Oregon Health & Science University P3-L-180 Investigating the relationship between fatigue, balance and walking in people with Multiple Sclerosis

James McLoughlin¹, Christopher Barr¹, Daina Sturnieks², Maria Crotty¹, Stephen Lord²

¹Flinders University, ²UNSW

P3-L-182 Falls and fractures in Parkinson's disease: study of sun exposure time and bone metabolism markers

Tetsuya Maeda', Ken Nagata¹, Yuichi Satoh¹, Takashi Yamazaki¹, Daiki Takano¹

¹Research Institute for Brain and Blood Vessels

P3-L-184 Dynamic eye movement models provide insight into how fall prevention improves motor control in aging

Olivier Coubard¹

¹CNS-Fed

M - Neurological diseases; Coordination of posture and gait

P3-M -186 Spatial hyperschematia without spatial neglect after insulo-thalamic disconnection

Arnaud Saj¹, Juliane Wilcke², Markus Gschwind³, Héloïse Emond¹, Frédéric Assal¹

¹University Hospital of Geneva, ²University of Geneva, ³Vaudois University Center Hospital

P3-M -188 Slowed afferent conduction time contributes to postural instability in patients with hereditary spastic paraplegia

Jorik Nonnekes¹, Mark de Niet¹, Lars Oude Nijhuis¹, Susanne de Bot¹, Bart van de Warrenburg¹, Bastiaan Bloem¹, Alexander Geurts¹, Vivian Weerdesteyn¹

¹Radboud University Medical Centre, Nijmegen

P3-M -190 Evaluation of the Reliability of a Questionnaire for Gait Disorders in Parkinson's Disease Patients

Hana Brozova¹, Martina Hoskovcova¹, Petr Dusek¹, Katerina Zarubova¹, Robert Jech¹, Jan Roth¹, Jan Rusz¹, Evzen Ruzcika¹

¹Charles University in Prague, 1st Faculty of Medicine

P3-M -192 Gait instability measured by dual task gait test and leukoaraiosis

Bernard Auvinet¹, Claude Touzard², Celine Foucher¹, Arnaud Delafond¹ ¹Polyclinique du Maine, ²Hospital LAVAL

P3-M -194 Executive function relates to specific gait and balance metrics in Parkinson's disease

*Martina Mancini*¹, Rajal Cohen², Krystal Klein¹, John Nutt¹, Fay Horak² ¹Oregon Health & Science University, ²University of Idaho

P3-M-196 Inhibitory Deficits Are Associated With Freezing of Gait in Parkinson's Disease

*Rajal Cohen*¹, Mari Nomura², Krystal Klein², Michael Fleming², Martina Mancini², Jay Nutt², Fay Horak²

¹University of Idaho, ²Oregon Health & Science University

P3-M -198 Subcortical and cortical contributions to posture and movement planning and preparation for forward reaching in standing post stroke.

Sandy McCombe Waller¹, Andrea Gaeta², Chieh-ling Yang², Larry Magder², Mark Rogers²

¹University of Maryland School of Medicine, ²University of Maryland

P3-M -200 Imposing asymmetry through split-belt walking in patients Parkinsons disease

*Farshid Mohammadi*¹, Sabine Verschueren¹, Sjoerd Bruin¹, Alice Nieuwboer¹

¹KU Leuven

P3-M -202 The validity of sensor-based gait assessment in Parkinsons Disease

*Pieter Ginis*¹, Alberto Ferrari², Laura Rocchi², Lorenzo Chiari², Alice Nieuwboer¹

¹KU Leuven, ²University of Bologna

P3-M -204 Abnormal external oblique muscle activity in camptocormic patients with Parkinson's disease

Yoshihiko Furusawa¹, Aihara Yuri¹, Yasuyuki Iwata¹, Tomoya Taminato¹, Yohei Mukai¹, Tomohiko Takei¹, Takashi Hanakawa¹, Takashi Sakamoto¹, Miho Murata¹

¹National Center Hosptail, National Center of Neurology and Psychiatry

P3-M -206 Gait adaptability training improves obstacle avoidance capacities and dynamic stability in patients with degenerative cerebellar ataxia

Vivian Weerdesteyn¹, Ella Fonteyn¹, Anita Heeren¹, Jasper-Jan Engels¹, Jasper Den Boer¹, Bart Van de Warrenburg¹

¹Radboud University Medical Centre

P3-M -208 The neural network learning functional electrical stimulation (FES) for the correction of drop-foot in hemiplegia

*Toshiki Matsunaga*¹, Yoichi Shimada², Takenori Tomite², Kimio Saito², Takehiro Iwami³

¹Akita University Hospital, ²Akita University Graduate School of Medicine, ³Akita University Faculty of Engineering and Resource Science

P3-M -210 Dynamic postural control under visual constraint in poststroke hemiplegic patients

Yuko Kuramatsu¹, Yuji Yamamoto², Shin-Ichi Izumi¹ ¹Tohoku University, ²Nagoya University

P3-M -212 Understanding Balance Differences in Multiple Sclerosis: An Investigation of Differences in Sensory Feedback on Stability

Luke Denomme¹, Michael Cinelli¹ ¹Wilfrid Laurier University

N - Cognitive, attentional and emotional influences; Sensorimotor control

P3-N-214 Estimating Mood from MPF of EMG during Walking *Yuta Kinase¹*, Gentiane Venture¹

¹Tokyo University of Agriculture and Technology

P3-N-216 Stance stability can affect imagined arm movements. *Hayley Boulton*¹, Subhobrata Mitra¹ ¹University of Warwick

P3-N-218 Fear Of Falling And Multi-Tasking During Stair Descent In Community Dwelling Older Women

*Bradford McFadyen*¹, Sophie Blanchet¹, Constantinos Maganaris², Bill Baltzopolous³

¹CIRRIS-U. LAVAL, ²Manchester Metropolitan University, ³Brunel University

P3-N-220 Investigating the cognitive processes underlying gait and falls in young and older healthy adults: Returning to an executive model.

Elizabeth Walshe[†], **Richard A. P. Roche**¹, **Sean Commins**¹ ¹National University of Ireland Maynooth

Poster Sessions

P3-N-222 Effects of attentional focus on imagery and execution of sit-to-stand movements in healthy young and older adults *Kanokwan Srisupornkornkool*⁷, Suvobrata Mitra¹

¹University of Warwick

P3-N-224 Cognitive decline is associated with impairments in mobility in healthy older adults: findings from a 5 year prospective study

*Shirley Shema*¹, Roy Tzemah¹, Marina Brozgol¹, Talia Herman¹, Nir Giladi¹, Anat Mirelman¹, Jeffrey Hausdorff¹

¹Tel Aviv Sourasky Medical Center

P3-N-226 Dual tasking affects lateral trunk control in healthy younger and older adults

*Tsuyoshi Asai*¹, Takehiko Doi², Soichiro Hirata³, Hiroshi Ando⁴ ¹Kobegakuin University, ²National Center for Geriatrics and Gerontology, ³Higashihirosima Orthopedic clinic, ⁴Kobe University

P3-N-228 Stepping accuracy of walking measured using a cancellation task

*Ryotaro Saito*⁷, Yoshifumi Ikeda¹, Yoshimi Nakajima¹, Hideyuki Okuzumi¹ ¹Tokyo Gakugei University

P3-N-230 Relationship between visual influence on path integration and landmark navigation ability

*Kishiko Sunami*¹, Hidifumi Yamamoto¹, Yuki Kouda¹, Naohiro Tsuyuguchi¹, Hideo Yamane¹

¹OsakaCityUniversity

P3-N-232 Awareness of visual reliability significantly influences the relative sensory weight on motion perception under sensory conflict condition

Sue Park¹, Hyeob Choi¹

¹KAIST

P3-N-234 Dual-task effect on proprioceptive target-matching task by young healthy individuals

Kazuhiro Yasuda¹, Yuki Sato¹, Naoyuki limura¹, Hiroyasu lwata¹ ¹Waseda University

P3-N-236 The acute effects of transcranial direct current stimulation (tDCS) on balance and cerebral perfusion in young adults

*Brad Manor*¹, Junhong Zhou², Hao Ying¹, Alvaro Pascual-Leone¹, Jue Zhang¹

¹Harvard Medical School, ²Peking University

O - Modeling, robotics and biomechanics and implantable neuroprosthesis; Coordination of posture and gait

P3-0-238 Human Balance Control during Walking on Compliant Ground

Kenji Hashimoto', Egidio Falotico², Atsuo Takanishi¹, Cecilia Laschi², Paolo Dario², Alain Berthoz³

¹Waseda University, ²Scuola Superiore Sant'Anna, ³College de France

P3-0-240 Structural analysis of trajectory variances in walking task with obstacles

Davide Zambrano¹, Colas Authié², Cecilia Laschi¹, Alain Berthoz², Daniel Bennequin³

¹Scuola Superiore Sant'Anna, ²Collège de France - CNRS, ³Institut de Mathématiques de Jussieu

P3-0-242 Squatting, a universal posture that minimizes instability: modelling and simulation of reaction to disturbance when squatting and standing

Gilles Dietrich¹, Lena Ferrufino², Blandine Bril² ¹Université Paris Descartes, ²Ecole des Hautes Etudes en Sciences Sociales

P3-0-244 Differences in the fall responses of sedentary subjects versus contact and noncontact sportsmen due to tendon vibration at different sensory conditions

Ozan Cinar¹, Emre Akcay¹, Ahmet Yildirim¹, Senih Gurses¹ ¹Middle East Technical University

P3-0-246 Efficacy of the robot suit HAL in a hemiplegic client *Toru Takeda'*, Eriko Sudo', Misao Nakazawa'

- ¹Akita Prefectural Center for Rehabilitation and Psychiatric Medicine
- P3-0-248 Contact force on the medial knee joint and knee function in the elderly: An inverse simulation analysis of gait

Shinya Ogaya', Hisashi Naito², Akira Iwata¹, Yumi Higuchi¹, Satoshi Fuchioka¹, Masao Tanaka²

¹Osaka Prefecture University, ²Osaka University

P3-0-250 Decomposition Method for Dynamic Posturographic Data *Emre Akçay*¹, Senih Gürses¹, Kemal Özgören¹ ¹Middle East Technical University

P3-0-252 The Digits Force during Cylindrical Grasp in Natural and Constrained Grasp

You-Hua Su¹, Po-Tsun Chen¹, Li-Chieh Kuo¹, Fong-Chin Su¹ ¹National Cheng Kung University

P - Habilitation and rehabilitation; Coordination of posture and gait

P3-P -254 Immediate beneficial effects of a mental rotation of foot stimuli for upright postural control in young healthy participants

*Tsubasa Kawasaki*¹, Kazuhiro Yasuda², Takahiro Higuchi¹ ¹Tokyo Metropolitan University, ²Waseda University

P3-P -256 Positive and negative effects of support by upper limbs on performance accuracy of lateral body weight-shifting

Miyoko Watanabe¹, Takahiro Higuchi¹, Kuniyasu Imanaka¹ ¹Tokyo Metropolitan University

P3-P -258 Aftereffect of gait exercise using functional electrical stimulation in hemiplegic patients

Maegawa Ryouta', Hatanaka Yasuhiko', Nakamata Takaaki¹, Saito Kouichi', Ito Kazuhiro', Kitagawa Yuka', Uno Yukiko', Kitagawa Megumi', Tamura Kimiyosi'

¹Graduate School Medical Science, Suzuka University of Medical Science/ Rehabilitation center Oumionsen Hospital

P3-P -260 Balance and cognitive reactivation for patients with atactic disorder during recovery stroke period

Maria Abroskina¹, Semen Prokopenko¹, Vitaliy Lytnev¹, Svetlana

Kaygorodceva¹, Maria Turchenko¹ ¹Krasnoyarsk State Medical University

P3-P -262 Assessment of the balance and gait functions in patients with the syndrome of central hemiparesis after stroke

Maria Abroskina', Vera Ondar¹, Semen Prokopenko¹, Vitalyi Lytnev¹, Vera Vlasova¹

¹Krasnoyarsk State Medical University

P3-P -264 The effect of gait speed on gait variability and asymmetry in children and adolescents with Cerebral Palsy

Siri Braendvik¹, Tobias Goihl³, Beatrix Vereijken²

¹St. Olav's University Hospital, ²Norwegian University of Science and Technology, ³Trøndelag Orthopedic Workshop

P3-P -266 Effects of Clock-Turning Pattern on Gait Performance in People with Parkinson Disease

Wen-Chieh Yang¹, Kwan-Hwa Lin¹, Wei-Li Hsu¹, Ruey-Meei Wu³, Tung-Wu Lu²

¹College of Medicine, National Taiwan University, ²National Taiwan University, ³National Taiwan University Hospital, College of Medicine, National Taiwan University

P3-P -268 The process of brake reaction time and knee functional test for patients with total knee arthroplasty

Jing-Min Liang¹, Wen-Lan Wu¹, Hsuan-Ti Huang¹, Wei-Tso Hung¹ ¹kaohsiung Medical University

Q - Cognitive impairments; Aging

P3-Q-272 Further evidence for the co-dependence of cognitive function and mobility in aging: findings from a 5 year prospective study

*Roy Tzemah*¹, Shirley Shema¹, Talia Herman¹, Marina Brozgol¹, Nir Giladi¹, Anat Mirelman¹, Jeffrey Hausdorff¹

¹Tel Aviv Sourasky Medical Center

P3-Q-274 Disability in Instrumental Activities of daily living in elderly patients with Mild Cognitive Impairment or Alzheimers disease

Karin Hesseberg¹, Astrid Bergland¹, Hege Bentzen², Anette Hylen-Ranhoff², Knut Engedal³

¹Oslo and Akershus University College, ²Diakonhjemmet Hospital, ³Faculty of medicine, University of Oslo

P3-Q-276 Quantitative gait parameter changes in good and poor Trail Making Test performers under challenging single and dual tasking conditions: Cross-sectional analysis in 673 elderly

*Markus Hobert*¹, Sinja Meyer¹, Raphael Niebler², Alexandra Gaenslen¹, Kathrin Brockmann¹, Isabel Wurster¹, Gerhard Eschweiler², Daniela Berg¹, Walter Maetzler¹

¹Center of Neurology, University of Tuebingen, ²University Hospital Tuebingen

P3-Q-278 Long-term effects of concussion on a collision avoidance task *Carmen Baker*¹, Michael Cinelli¹

¹Wilfrid Laurier University

R - Development of posture and gait; Coordination of posture and gait

P3-R-280 Effect of icing lower-leg muscle during walking on irregular surface

Akira Obara¹, Shiina Takayuki¹, Takemura Hiroshi¹, Mizoguchi Hiroshi¹ ¹Tokyo University of Science

P3-R-282 Development of postural control in children involves functional freezing of degrees of freedom

Akio Yamamoto¹, Shun Sasagawa¹, Naoko Oba¹, Kimitaka Nakazawa¹ ¹University of Tokyo

P3-R-284 Task-specificity of postural control in patients recovering from stroke

Shogo Hiragami¹, Tetsushi Nonaka¹, Yasuo Suzuki²

¹Research Institute of Health and Welfare, Kibi International University, ²Kurashiki Kinen Hospital

P3-R-286 Assessment of Ankle Joint Stiffness along Various Frequency of Translation Perturbation

Aizreena Azaman¹, Shin-ichiroh Yamamoto¹ ¹Shibaura Institute of Technology

P3-R-288 Characteristics of gait in adults with intellectual and developmental disabilities

*Hideyuki Okuzumi*¹, **Yoshifumi Ikeda**¹, **Shogo Hirata**², **Mitsuru Kokubun**¹ ¹Tokyo Gakugei University, ²Chiba University

P3-R-290 Motor function in children with Autism Spectrum Disorder: a cross-sectional longitudinal study

*Nicoleta Bugnariu*¹, **Rita Patterson**¹, **Dan Popa**², **Carolyn Garver**³ ¹UNT Health Science Center, ²University of Texas at Arlington, ³Autism Treatment Center

P3-R-292 Investigating balance in persons with Down Syndrome: A focus on vision

Lisa Bunn¹, Jonathan Waddington¹, Chris Harris¹, Heather Skirton¹, Jonathan Marsden¹ ¹Plymouth University

S - Effect of medication on posture and gait; Neurological diseases

P3-S-294 Next -day residual effects of Zolpidem and Triazolam, Rilmazafone Hydrochloride administered at bedtime: a randomized double-blind study in elderly subjects

Sachiko Uemura-Ito¹, Masahiko Wakasa¹, Akira Saito¹, Makoto Sasaki¹, Masahiro Satake¹, Shunsuke Kudo¹, Shinichi Shindo¹, Takashi Kanbayashi², Tetsuo Shimizu², Takanobu Shioya¹, Kyoji Okada¹ ¹Akita University Graduate School of Health Sciences, ²Akita University Graduate School of Medichine

P3-S-296 Dual task costs of gait in advanced Parkinson's disease improve with L-Dopa but not with deep brain stimulation *Markus Hobert*¹, Lara Paulig¹, Rejko Krüger¹, Daniel Weiss¹, Walter

Maetzler¹

¹Center of Neurology, University of Tuebingen

T - Ergonomics; Tools and methods for posture and gait analysis

P3-T-298 Is strategy a matter of age? *Martine Gilles*¹, Jean-Charles Guélin¹, Pascal Wild¹ ¹INRS

P3-T-300 Biomechanical Changes During Various Cross-Legged Sitting Postures

Soonjae Ahn¹, Seunghyeon Kim¹, Youngho Kim ¹Department of Biomedical Engineering and Institute of Medical Engineering, Yonsei University

U - Psychiatric disorders; Vestibular function and disorders

P3-U-302 Neuro-otological findings in psychiatric patients with nystagmus

*Kensuke Kiyomizu*¹, Keiji Matsuda², Koji Torihara³, Meiho Nakayama⁴, Shinji Fukudome², Shinya Sato³, Takeshi Nakamura⁵, Yasushi Ishida², Kensei Yoshida¹, Tetsuya Tono²

¹Yoshida Hospital , ²Faculty of Medicine, University of Miyazaki, ³Miyazaki prefectural Nobeoka Hospital , ⁴Nagoya City University , ⁵Miyakonojo National Hospital

Poster Session 4 BLUE

Tuesday, June 25 between 16:30 and 18:30

A - Tools and methods for posture and gait analysis

P4-A-2 Intrasession reliability for measures of variability in gait Baard Bogen¹, Mona Aaslund¹, Anette Ranhoff¹, Rolf Moe-Nilssen¹ ¹University of Bergen

P4-A-4 Towards automated detection of freezing of gait during community ambulation? Further investigation of the FoG index

*Eran Gazit*¹, Ariel Tankus¹, Tal Freedman¹, Talia Herman¹, Inbal Maidan¹, Nir Giladi¹, Anat Mirelman¹, Jeffrey Hausdorff¹

¹Tel aviv sourasky medical center

P4-A-6 Trunk sway measurements during turning while walking in healthy adults

Naofumi Tanaka¹, Ryushin Hashiba², Ryota Tobishima², Hiroko Saito², Asako Hirayama², Yoshihiro Muraoka³, Shin-Ichi Izumi¹

¹Tohoku University Graduate School of Medicine, ²Medical Court Hachinohe West Hospital, ³Faculty of Human Sciences, Waseda University

P4-A-8 Correlation between Stabilometry and Electronystagmogram in Patients with Dizziness *Hiroko Torii*¹, Mami Matsunaga¹, Kyoko Shimizu¹, Akiko Taura¹, Kazuo

Funabiki², Juichi Ito¹

¹Kyoto University, ²Osaka Bioscience Institute

P4-A-10 Quantitative Evaluation of Stroke Hemiplegic Gait Using Principle Component Analysis

*Yoshitaka Otani*¹, Osamu Aoki², Tomohiro Hirota³, Masahito Murakami¹, Yuri Inoue¹, Masayuki Uesugi¹, Junichi Kato⁴, Hiroshi Ando⁵

¹Faculty of Rehabilitation/Kobe International University, ²Faculty of Rehabilitation/Shijonawate Gakuen University, ³Department of Rehabilitation/ Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, ⁴Department of Internal Medicine/Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, ⁵Faculty of Health Science/Kobe University Graduate School

P4-A-12 Study of the stability in time of marksmen

*Pierre-Marie Gagey*¹, Raoul Dudde², Maurice Ouaknine³, Bernard Weber¹ ¹Institut de Posturologie, Paris, ²Fédération Française de Tir, ³Université Méditerrannée

P4-A-14 Pedography - Dynamic Assessment of Foot Function Holger Neumann¹

¹Novel GMBH

P4-A-16 The effect of overground walking protocols on the measurement of average gait and gait variability data

Chitra lakshmi K Balasubramanian¹, Robert Page¹, Joe Stoecklein¹ ¹University of North Florida

P4-A-18 Detecting not-wearing periods during activity monitoring in older adults

Mirjam Pijnappels¹, Martijn Niessen², Rob van Lummel², Jaap van Dieën¹ ¹VU University, ²McRoberts

P4-A-20 The effect of sensory manipulations on mediolateral balance performance.

Luis Eduardo Cofré Lizama¹, Mirjam Pijnappels¹, Jaap van Dieen¹ ¹VU University Amsterdam

P4-A-22 Dual-task effects on smoothness of walking in patients with stroke using power spectrum entropy of trunk acceleration.

Yu Inoue¹, Shogo Hiragami², Kazuhiro Harada³, Kojiro Kagawa⁴ ¹Graduate School of Health and Welfare Science, Okayama Prefectural University, ²Research Institute of Health and Welfare, KIBI International University, ³School of Health Science and Social Welfare, KIBI International University, ⁴Faculty of Health and Welfare Science, Okayama Prefectural University

P4-A-24 Gait Patterns of Ambulatory Hemiplegic Elderly

*Mi Jung Kim*¹, Junho Kim¹, Dohyun Yoon¹, Hyunpil Cho¹, Seunh Jun Seol¹, Sangwon Kong¹, Kyung Soo Lee¹, Seung young Choi¹, Boram Kang¹, Dong Hun Lee¹, Taikon Kim¹

¹Hanyang University Medical Center

P4-A-26 High-Pass-Filter Cut-Offs Determination of the Fatigue Index During Isotonic contractions

Jungyoon Kim¹, Soonjae Ahn¹, Youngho Kim¹ ¹Yonsei University

P4-A-28 Gait assessment using desired center of pressure: How robotics concept matches human gait

Kei Masani¹, Takeshi Yamaguchi², Hiroshi Onodera³

¹Toronto Rehabilitation Institute, ²Tohoku University, ³National Hospital Organization CREST lab

P4-A-30 The Effect of Postural Stability by Foot Arch in Older People Emi Anzai¹, Kanako Nakajima¹, Yumi Iwakami², Shuichi Ino³, Toru Ifukube⁴, Kazuhiko Yamashita², Yuji Ohta¹

¹Ochanomizu University, ²Tokyo Healthcare University, ³National Institute of Advanced Industrial Science and Technology, ⁴Institute of Gerontology, University of Tokyo

P4-A-32 A new metric for upright balance Mohammad Hadi Honarvar¹, Motomu Nakashima¹

¹Tokyo Institute of Technology

P4-A-34 Assessing fall risk in Patients with Parkinson's Disease using an instrumented 3-day activity monitoring

Aner Weiss¹, Talia Herman¹, Nir Giladi¹, Jeffrey Hausdorff¹ ¹Tel Aviv Sourasky Medical Center

P4-A-36 Role of the human foot in the erect posture *Okan Alkan*¹, Roshanak Akbarifar¹, Senih Gurses¹ ¹Middle East Technical University P4-A-38 Stability and Dynamics of Turn During Walking in People With Parkinson's Disease

*Martina Mancini*¹, Sabato Mellone², Fay Horak¹, Ryan Meyer¹, John Nutt¹, Lorenzo Chiari²

¹OHSU, ²University of Bologna,

P4-A-40 Heterogeneity of postural sensory integration functions in Parkinson disease

*Martijn Muller*¹, **Roger Albin**¹, **Kirk Frey**¹, **Nicolaas Bohnen**¹ ¹University of Michigan

P4-A-42 Effects of Hallux Valgus on the Lower Limb Biomechanics During Walking

*Kao-Shang Shih*¹, Hui-Lien Chien², Chu-Fen Chang², Tung-Wu Lu² ¹Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ²Institute of Biomedical Engineering. National Taiwan University

P4-A-44 The effect on gait asymmetry of treating older hip fracture patients in a geriatric ward as compared to usual care in an orthopedic ward? The Trondheim Hip Fracture trial

*Pernille Thingstad*¹, Kristin Taraldsen¹, Beatrix Vereijken¹, Rolf Moe-Nilssen², Olav Sletvold³, Jorunn Helbostad¹

¹NTNU, ²University of Bergen, ³St. Olav's University Hospital and NTNU

P4-A-46 Gait performance abnormality in patients with vestibular disorders.

Yoshiaki Itasaka', Kazuo Ishikawa', Eigo Omi', Koh Koizumi' 'Akita University

P4-A-48 Three-dimensional analysis of postural control during stepping in patients with unilateral vestibular dysfunction *Naoya Egami*⁷, Shinichi Iwasaki¹, Chisato Fujimoto¹, Tatsuya Yamasoba¹

¹University of Tokyo

B - Sensorimotor control

P4-B-50 Altered proprioceptive weighting impairs postural balance in individuals with chronic obstructive pulmonary disease

Lotte Janssens¹, Simon Brumagne¹, Alison McConnell², Kurt Claeys¹, Madelon Pijnenburg¹, Nina Goossens¹, Jonas Raymaekers¹, Chris Burtin¹, Wim Janssens¹, Marc Decramer¹, Thierry Troosters¹ ¹KU Leuven, ²Brunel University

P4-B-52 Undershooting of target angles in a joint position matching task derives from passive movement in the position memory phase

Yuki Sato¹, Kazuhiro Yasuda¹, Hiroyasu Iwata¹ ¹Waseda University

P4-B-54 Soleus H-reflex is suppressed during unilateral hip and/or knee passive movements in human

Yohei Masugi¹, Taku Kitamura², Tetsuya Ogawa³, Noritaka Kawashima³, Kimitaka Nakazawa¹

¹University of Tokyo, ²Shibaura Institute of Technology, ³Research Institute of the National Rehabilitation Center for Persons with Disabilities

P4-B-56 Sensory and cognitive challenge to postural control in older and young adults

*Kimberly Dockx*¹, Veerle Van den Bergh¹, Bart Malfait¹, Sabine Verschueren¹, Alice Nieuwboer¹

¹KU Leuven

P4-B-58 Age-associated differences in global and segmental adaptive locomotor responses: effects of dual-task and suboptimal sensory conditions

Patricia Hewston¹, Nandini Deshpande¹ ¹Queen's University

P4-B-60 Effects of mismatch of visual and vestibular input to standing and stepping state. - A study using artificially moved 3D visual image triggered with head movement.

Tatsuhiko Harada¹, Yasuaki Ito¹, Tsunemi Kitagawa¹

¹International University of Health and Welfare Atami Hospital

P4-B-62 Backward Obstacle Avoidance In Young Healthy Adults Jeanet Wichards¹, Duysens Jaak², Bradford McFadyen³ ¹Radboud University, ²KU-Leuven, ³CIRRIS-U. LAVAL

P4-B-64 Control of COP and COG in anticipatory postural adjustments during multi-directional gait initiation

Tomonori Sawada¹, Masaki Yukimune¹, Nobuhiro Kito¹ ¹Hiroshima International University

P4-B-66 Early rate of split-belt adaptation is correlated to somatosensory perception

Wouter Hoogkamer¹, Zrinka Potocanac¹, Daria Uniszkiewicz¹, Steve Dierckxsens¹, Stephan Swinnen¹, Jacques Duysens¹ ¹KULeuven

P4-B-68 Phase modulation of corticospinal excitability for forearm muscle during voluntary leg stepping

*Taku Kitamura*¹, Yohei Masugi², Shin-ichiro Yamamoto¹, Kimitaka Nakazawa²

¹Shibaura Institute of Technology, ²University of Tokyo

P4-B-72 Role of the feet during a complex curved path Laura Marazzato¹, Cecilia Laschi¹, Paolo Dario¹, Alain Berthoz², Colas Authie²

¹The Biorobotics Institute, ²Ippa,Umr7152, Cnrs-Collège De France

C - Exercise and physical activity; Habilitation and rehabilitation

P4-C-74 Repeated snowboard exercise with conflict between body rotation and delayed visual feedback in the virtual reality world enhances head stability and slalom run performance in the real world in normal young subjects

Yoshiro Wada¹, Noriaki Takeda², Kazuyoshi Tsukamoto³

¹Nara Medical University, ²University of Tokushima, ³Kagawa University

P4-C-76 Life's a Beach! Benefits of walking on sand on gait kinematics in individuals with MS

Maayken van den Berg¹, Ben Patritti², Chris Barr¹, James McLoughlin¹, Maria Crotty¹

¹Flinders University, ²Repatriation General Hospital

P4-C-78 Effects of the oriental breathing technique on the center of pressure trajectory while standing

Atsushi Itaya¹, Tomohiro Kizuka¹, Takuro Endo¹ ¹University of Tsukuba

University of Isukuba

P4-C-80 Evaluation of dual task training on gait and cognitive parameters in elderly idiopathic faller

*Moran Dorfman*¹, Talia Herman¹, Marina Brozgol¹, Shirley Shema¹, Aner Weiss¹, Anat Mirelman¹, Jeffrey Hausdorff¹

¹Movement Disorder Unit, Tel Aviv Sourasky medical center

Poster Sessions

P4-C-84 Clinical experience using a 5 week training program that combines a treadmill with virtual reality to enhance gait

Shirley Shema¹, Pablo Bezalel¹, Ziv Sebrelo¹, Moran Dorfman¹, Orly Wechsler-Yannai¹, Nir Giladi¹, Jeffrey Hausdorff¹, Anat Mirelman¹ ¹Tel Aviv Sourasky Medical Center

P4-C-86 Changes to ankle joint motor patterns after gait exercise: immediate and after effects

*Koichi Saito*¹, Ryouta Maegawa², Kazuhiro Ito², Takaaki Nakamata¹, Yasuhiko Hatanaka¹

¹Suzuka University of Medical Science, ²Oumionsen Hospital

P4-C-88 Effectiveness of Resistance Training on Muscle Strength and Physical Function In People With Parkinson's Disease: A Systematic Review And Meta-Analysis

Chloe, Lau Ha Chung¹, Thilarajah Shamala², Dawn Tan²

¹TanTock Seng Hospital , ²Singapore General Hopsital

P4-C-90 Strength- versus balance-training to improve postural control in patients with Parkinson's Disease: a randomized rater-blinded trial - preliminary results

Christian Schlenstedt¹, Jan Raethjen¹, Burkhard Weisser¹, Günther Deuschl¹

¹Christian-Albrechts-University of Kiel, Germany

P4-C-92 Functional ability and health in patients with cervical disc disease compared with patients with chronic whiplash associated disorder and healthy people.

Anneli Peolsson¹

¹Linköping University

D - Vestibular function and disorders

P4-D-94 Standing balance tests to screen for vestibular disorders Helen Cohen¹, Ajitkumar Mulavara², Brian Peters³, Haleh Sangi-Haghpeykar¹, Jacob Bloomberg⁴

¹Baylor College of Medicine, ²Universities Space Research Association, ³Wyle Science, Technology and Engineering Group, ⁴NASA/ Johnson Space Center

P4-D-96 Dizziness, Postural control and Quality of life in patients with Benign Paroxysmal Positional Vertigo (BPPV): A retrospective cohort study

Dawn Tan¹, Grace Koh¹, Geetha Kunasaigaran¹

¹Singapore General Hospital

P4-D-98 New Three-Dimensional Head Movement Video Image Analysis Technique Using Personal Computer and Public Domain Software

Makoto Hashimoto', Takuo Ikeda¹, Hironori Fuji¹, Hiroshi Yamashita¹ ¹Yamaguchi University

P4-D-100 Animal study of vestibular-evoked myogenic potentials *Yi-Ho Young*¹

¹National Taiwan University Hospital

P4-D-102 New concept of BPPV pathology ""cristolithiasis"" -Otoconia attached on the crista ampullaris-

Koji Otsuka¹, Mamoru Suzuki¹, Miho Negishi¹, Taro Inagaki¹, Masanori Yatomi¹, Ujimoto Konomi¹, Takahito Kondo¹, Yasuo Ogawa¹ ¹Tokyo Medical University P4-D-104 Characteristics of verticality in the hemiplegic patients after stroke

Atsushi Manji¹, Kazu Amimoto¹, Osamu Moromochi², Ryota Uchida², Mana Okochi²

¹Tokyo Metropolitan University, ²Saitama Misato General Rehabilitation Hospital

P4-D-106 Sleep medicine may cure the Meniere's disease

Meiho Nakayama¹, Shinichi Kuriyama¹, Kayoko Kabaya¹, Keiji Takemura¹, Shingo Murakami¹

¹Nagoya City University

P4-D-108 Body image relies on a vestibular sense of the gravitoinertial force field

Richard Fitzpatrick¹, Brian Day²

¹Neuroscience Research Australia, ²University College London

E - Orthopedic diseases and injuries

P4-E-110 Effect of Kinesio Taping on EMG Onset in Patellofemoral Pain Syndrome

Yi-Wen Chang¹, Shr-Ming Li¹, Hong-Wen Wu¹

¹National Taiwan University of Physical Education & Sport

P4-E-112 The effect of hip chondropathy on single-leg balance performance in adults

Anna Hatton¹, Joanne Kemp¹, Sandy Brauer¹, Ross Clark², Kay Crossley¹ ¹The University of Queensland, ²The University of Melbourne

P4-E-114 The contribution of ankle strategy in balance control for people with ankle fracture

Fang-Ching Lin¹, Yun Chen Yeh¹, Shuya Chen¹, Ying-Hao Chen¹, Hsiu-Chen Lin¹, Horng-Chaung Hsu¹

¹China Medical University, Taiwan,

P4-E-116 Neuromuscular screening for ACL injury in elite female athletes during a single-leg drop vertical jump

Bart Malfait¹, Bart Dingenen¹, Jos Vanrenterghem², Filip Staes¹, Sabine Verschueren¹

¹Catholic University Leuven, ²John Moores University

P4-E-118 Pain intensity is correlated with postural strategies in patients with severe knee osteoarthritis under different sensory conditions.

*Rogerio Hirata*¹, Tanja Jørgensen ¹, Sara Rosager Mortensen², Lars Arendt-Nielsen¹, Henning Bliddal², Marius Henriksen ², Thomas Graven-Nielsen¹

¹Aalborg University, ²Copenhagen University Hospital,

F - Aging

P4-F-120 Relationship between hip extension and COP forward progression during gait in the elderly

Shingo Takashima', Takehiro Tagawa¹, Yusuke Torii¹, Masaru Ichikawa¹, Tsuyoshi Nishiwaki¹

¹ASICS Corporation

P4-F-122 Age-related difference of Center of Body Mass Motion during Walking

*Takaharu Hosoda*¹, Tomohiro Takahashi¹, Shin-ichiro Yamamoto¹, Noritaka Kawashima²

¹Shibaura Institute of Technology, ²Research Institute of NRCD, Japan

G - Aging; Coordination of posture and gait

P4-G-124 Impacts of Muscle Strength and Balance Control on the Component Tasks of the Timed up And Go Test

Tzurei Chen¹, Li-Shan Chou²

¹University of Evansville, ²University of Oregon

P4-G-126 Effects of aging on relationship between standing balance and two-point discrimination sensation in the plantar area

Kazuhiro Chidori¹, Keisuke Takeda², Yuji Yamamoto¹

¹Nagoya University, ²Hara Neurosurgery Clinic

H - Coordination of posture and gait

P4-H-128 Mechanisms underlying four-limb coordination of human walking - preliminary report on a split belt treadmill study

*Meir Plotnik*¹, **Yotam Bahat**¹, **Vadim Neder**², **Yoav Gimmon**¹ ¹Sheba Medical Center, ²Holon Institute of Technology

P4-H-130 Common muscle synergies for balance and walking *Lena Ting*¹, Stacie Chvatal¹

¹Emory University and Georgia Tech

P4-H-132 Gait characteristics of mild to moderate disabled Parkinson patients

Chang-Hwan Kim¹, Bee-Oh Lim², Mi-Young Kim¹, Kyu-Sung Kim¹ ¹School of Medicine, Inha University, ²ChungAng University

P4-H-134 Locomotor-respiratory entrainment is more constrained in low back pain

Paul Hodges¹, **Steven Saunders**¹ ¹The University of Queensland

I - Learning, plasticity and compensation; Coordination of posture and gait

P4-I-136 The effect of age on the adaptation process of gait termination under the repeated optic flow stimulation

*Suzuyo Okazaki*¹, Suetaka Nishiike¹, Hiroshi Watanabe², Takao Imai¹, Atsuhiko Uno¹, Tadashi Kitahara¹, Arata Horii³, Takefumi Kamakra¹, Yasumitsu Takimoto¹, Noriaki Takeda⁴, Hidenori Inohara¹

¹Osaka University Graduate School of Medicine/Japan, ²National Institute of Advanced Industrial Science and Technology, ³Osaka National Hospital, ⁴University of Tokushima Faculty of Medicine

P4-I-138 Role of the cerebellum and supplementary motor cortex in postural control during gait initiation in healthy adults: a pilot study

*Alienor Richard*¹, Amine El Helou², Sabine Meunier¹, Marie-Laure Welter² ¹CR-ICM, UMRS 7225, Groupe Hospitalier Pitié-Salpêtrière, ²ICM Fundation, Groupe Hospitalier Pitié-Salpêtrière

P4-I-140 Postural control adaptation during a repeated load release task

*Hiroshi Saito*¹, Masanori Yamanaka¹, Satoshi Kasahara¹ ¹Faculty of Health Sciences, Hokkaido University

J - Activity Monitoring; Cognitive, attentional and emotional influences

P4-J-142 Number of days of trunk acceleration measurements to

reliably assess the amount of daily walking in older adults *Kimberley van Schooten*¹, Sietse Rispens¹, Petra Elders¹, Paul Lips¹, Jaap van Dieen¹, Mirjam Pijnappels¹

¹VU University

P4-J-144 The effect of early Parkinsons disease on daily ambulatory activity

Sue Lord¹, Brook Galna¹, Alan Godfrey¹, David Burn¹, Lynn Rochester¹ ¹Newcastle University

K - Balance support device; Falls and falls prevention

P4-K-146 Electromyography (EMG) Analysis of Trunk and Leg Muscles Activities during Whole Body Tilt of 3D Dynamic Exercise Device

Chang-Ho Yu¹, Sun Hye Shin¹, Mi Yu¹, Kyung Kim¹, Ho Choon Jeong¹, Tae-Kyu Kwon¹

¹Chonbuk National University

P4-K-148 Sitting Balance in Individuals with Spinal Cord Injury and the Effects of Application of Functional Electrical Stimulation for Improving Sitting

*Matija Milosevic*¹, Kei Masani², Meredith Kuipers¹, Noel Wu¹, Molly Verrier², Kristiina Valter McConville³, Milos Popovic¹

¹University of Toronto, ²Toronto Rehabilitation Institute-UHN, ³Ryerson University

P4-K-150 Effect of Brainport balance device training on posture and gait in elderly patients with unilateral vertibular loss

Toshiaki Yamanaka', Yachiyo Sawai', Takayuki Murai', Taeko Ito', Naoki Shimizu', Hideyuki Okamoto', Nobuya Fujita', Hiroshi Hosoi' 'Nara Medical University, ²Nara Hospital

PROTOKINETICS Where Unmatched Technology and Expertise Bring You One Step Ahead

AMTI

AMTI has collaborated with top researchers to develop a wide range of force plates and instrumented biomechanics equipment specifically for the study of gait and balance. Our products include six-degree-of-freedom mounted and portable force plates; instrumented treadmills, stairs and walkers; and joint simulator machines for the evaluation of joint prosthetics.

www.amti.biz

ANT Neuro

ANT Neuro is a Dutch corporation specialized in the development, production, marketing and sales of medical and research applications. It develops software and equipment for the study of human brain signals, focusing on products with a high impact of innovation and technology. ANT Neuro was established in 1996 as a company of The University of Twente, Enschede. It now has offices located in Enschede in the Netherlands; Berlin in Germany; and Madison in Wisconsin, USA.

BERTEC JAPAN

Our mission is to provide solution for the analysis of human movement.

C-Motion Inc.

C-Motion has a passion for making the world's leading research tools for understanding the mathematically complex nature of movements in 3D. Our software Visual3D, is hardware independent, marker set independent, functionally extensible, and has the most capable modelling capabilities available. It provides clinically validated, consistent results from motion capture data. Applications include clinical assessments, rehabilitation, animal research, sports, virtual reality and many more.

ProtoKinetics.com

ProtoKinetics offers movement analysis systems for dynamic and standing studies, alongside an assistive device for patients with Parkinsonian gait (Mobilaser). The Zeno Walkway and PKMAS program quickly and easily produce pressure, temporal and spatial parameters over a variety of testing protocols. The equipment is ideal for evaluation and clinical research of individuals with central nervous system disorders, peripheral neuropathy, stroke, etc.

www.protokinetics.com

Northern Digital Inc. (NDI)

For over 30 years, Northern Digital Inc. (NDI) has been providing researchers with the tools they need for research-grade motion capture. Today the company is a world leader in advanced 3D measurement technology, with over 26,000 installations in more than 30 countries.

www.ndigital.com/lifesciences

PAL Technologies Ltd

PAL Technologies' award-winning activPAL(tm) accelerometer is the researcher's preferred choice for quantifying free-living sedentary, upright and ambulatory activities, providing the evidence for treatment interventions and disease related risks.

Creact International Corp.

Creact International serves engineering professionals with the best available instrumentation in the world and world-wide famous sensor devices.

Inter Reha

Selected and introduce various devices for highquality rehabilitaion work from the stand point of versatile clinical applications in the traing facilities, through the world-wide. Focusing the advanced and reliable rehabilitaion for 'Tomorrow'.

Innovative Sports Training, Inc

Innovative Sports Training is proud to provide The MotionMonitor, a total 3D motion analysis system for research and clinical applications involving the analysis of complex human movements such as for Gait Analysis, Balance Assessment and Biofeedback. Data from electro-magnetic trackers, active or passive markers, or marker-less systems with EMG, force plates, VR displays, video, and other analog devices are synchronously collected and presented in real-time.

www.TheMotionMonitor.com

Xsens Technologies B.V. / Zero C Seven, Inc.

Xsens is the leading innovator in 3D motion tracking technology and products. Its sensor fusion technologies enable a seamless interaction between the physical and the digital world in consumer electronics devices and professional applications such as 3D character animation, motion analysis, and industrial control & stabilization. Co-exhibitor Zero C Seven, is the exclusive distributor for Human measurement market in Japan.

病を治したい。いのちを救いたい。 私たち協和発酵キリンは、 抗体医薬のリーディング・カンパニーとして、 真摯に研鑽を積み重ねています。 一分でも一秒でも早く、 世界が待ち望む新薬をお届けするために。

グローバル・スペシャリティファーマ。 抗体医薬をリードする、協和発酵キリンです。

協和発酵キリン株式会社 http://www.kyowa-kirin.co.jp

2014 ISPGR World Congress

We are pleased to announce the **2014 ISPGR World Congress** will take place June 29 – July 3 in Vancouver, British Columbia, Canada at the Westin Bayshore Hotel. Please join us in beautiful Vancouver in 2014!

Join us next year for the 2014 ISPGR World Congress in Vancouver, British Columbia, Canada!

Key Dates: October 1, 2013: Abstracts & registration open

Accommodation at the Westin Bayshore Hotel is open for booking now! Double room (single or double occupancy) \$174 CDN - visit ispgr.org for more details

Meeting Floor Plans

Poster Floor Plans

Atorion 2nd Floor (2F)

Atorion basement (B1F)

- 72 -

Thank You to Our Supporters

Sponsors

Akita Branch of the Oto-Rhino-Laryngological Society of Japan inc.

ANIMA Corporation

IWASHIYA Co., Ltd.

Japan Society of Posture and Gait Research (JSPGR)

Exhibitors

MAGASHIMA MEDICAL INSTRUMENTS CO., LTD.

OHSAWA Co.,Ltd.

Tsumura & Co.

Inter Reha

